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Viscoelastic model for the dynamic structure factors of binary systems
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This paper presents the viscoelastic model for the Ashcroft-Langreth dynamic structure factors of liquid
binary mixtures. We also provide expressions for the Bhatia-Thornton dynamic structure factors and, within
these expressions, show how the model reproduces both the dynamic and the self-dynamic structure factors
corresponding to a one-component system in the appropriate (jpsigsidobinary system or zero concentration
of one component In particular we analyze the behavior of the concentration-concentration dynamic structure
factor and longitudinal current, and their corresponding counterparts in the one-component limit, namely, the
self-dynamic structure factor and self—longitudinal current. The results for several lithium alloys with different
ordering tendencies are compared with computer simulation data, leading to a good qualitative agreement, and
showing the natural appearance in the model of the fast sound phenomenon.
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[. INTRODUCTION the numerical data obtained is greatly aided if theoretical
_ _ _ models are available.
The development of inelastic neutron scatterifiyS) In this respect, and for pure systeasie-component sys-

techniques opened up, around 40 years ago, the experimentamg, a prominent role has been played by the so called
study of the dynamic properties of several condensed mattefiscoelastic model, introduced by Lovesey, which basically
systems, in particular of liquids. In principle the total scat-describes the dynamic structure factor as a sum of three
tered intensity in an INS experiment includes both incoherLorentzian functions of frequency, one of them representing
ent and coherent contributions, which are related, respegarticle diffusion and the other two describing damped
tively, to the self-dynamic structure factors and the dynamidropagation of collective excitations. This model applies for
structure factors. A clearcut separation of both contributiondntermediate wave vectoksbetween those corresponding to
is not always possible and in the analysis of the raw data it & hydrodynamic behaviofiow k where the hydrodynamic
useful to have simple models for the dynamic and/or seli-0del is applicableand those corresponding to an ideal gas

dynamic structure factors in order to achieve such a separ@ehavior(largek, where the free-particle model is correat

tion through a numerical fitting procedure, and perform a5|milar expression is also available for the self-dynamic

proper interpretation of the experimental data. Even in thosgtUcture factor, but its use has been much more scarce in the
erature, although as we shall show below, the viscoelastic

cases Wher(_a there is co_herent scattering only, it may happ odel for the self-dynamic structure factor in fact has very
that the particular behavior of the dynamic structure factor a?nteresting properties that other models lack

a function of fre_:quency obscures _the _analysis, fqr instance_: The case of mixtures is more complicated. Although both
when no clear side peaks appear; in this case again the avajlie ygrodynamic and the free-particle models are readily

ab”itﬁ' Of. models forllfittin% h(;lprs] in_ the fin';]er%retatiqn of the extended to mixtures, there is no well-behaved model so far
mechanisms controlling the behavior of the dynamic propery, jescripe the intermediaterange. A previous attempt to

ties of the system. Similar problems are encountered wheg,onq the viscoelastic model to liquid mixturks failed

the dynamic properties of liquid systems are studied by €ipeca 56 some errors in the derivation made it incorrect, and
ther inelastic x-ray scatteringXS) or molecular dynamics o efore inapplicable. In particular the model did not re-
(MD) simulations. Even though IXS produces coherent scaty e the one-component case for pseudobinary systems, i.e.
tering only, and MD provides very detailed information oft ose systems which are in fact one component, but v;/ith '
the properties of interest, nevertheless the interpretation %Pome particles labeled differently from othéseme 012 them
are named type 1 and the rest type 2
In this paper we extend the viscoelastic model to mix-
*Permanent address: Institute for Condensed Matter Physics, tures, and in particular to binary mixtures, in a consistent
Svientsitsky Str., Lviv 79011, Ukraine. way which reduces to the correct one-component limit in the
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appropriate case@seudobinary mixture or zero concentra- the corresponding intermediate scattering functions by pass-
tion of one componeint Moreover, we give expressions for ing to the Fourier domain:

the so called Bhatia-Thornton dynamic structure factors, .

which are very useful when discussing ordering properties of S(IZ, w) = if dt et F(Iz,t) - lReIE(IE,z: —iw) (3)
binary systems. From these expressions it is easy to show the 27)_, T

reduction to the one-component case, leading not only to the .

dynamic structure factor, but also to the self-dynamic strucwhere Re stands for the real part aftk,z) is the Laplace
ture factor of pure systems. transform ofF(k, 1), i.e.,

We compare the results of the model with MD data for
three different types of systems: the first is a pseudobinary
alloy, namely, pure liquid Li, the second corresponds to Li
-Mg, which is a typical quasi-ideal system, and finally the
third one corresponds to JBPb, which is an archetypical case The memory functions of the IS (k,t), and of the SIFS,
for a class of compound forming alloys. The case of system#/(k,t), are then introduced through the generalized Lange-
with tendency to phase separation has already been consivin equations, which read in the time domain and in the
ered beforg?2], in the study of liquid L gNag 3 Which is  Laplace domain
again a typical phase separating mixture. Although appar- q .
ently trivial, the study of the pseudobinary case leads to in- - Cca__ " D
teresting conclusions regarding the behavior of the self- th(k't)_ deM(k’T)F(k’t gL ®)
dynamic structure factor, which vindicate the use of the
viscoelastic model for the self-dynamic structure factor of ~ o ~ e e
one-component systems. F(k2) =[z+M(k 2] F(kt=0), (6)

with equivalent equations for the self-counterparts. The

higher order memory functions are introduced exactly in the
[l. FORMALISM same way: the second order memory functiditk,t) and
Ng(k,t) are the memory functions dfi(k,t) and My(k,1),
respectively, while the third order memory functiokgk,t)

Here we merely recall the expressions for the dynamigyngk (k,t), are the memory functions df(k,t) andNg(k, t),
properties we are interested in for one-component SysteMgsgpectively. The initial values of the memory functions
The basic magnitude to be considered is the intermediat@nich appear in the Laplace formulation of the generalized
scattering functiorflSF), F(k,t), which describes the collec- Langevin equation are easily determined in terms ofrtine

tive dynamic behavior of the system and is defined a N
F(k,t)=(px(t)p_x(0)), wherepg(t) is the microscopic number %requency moments of the DSF and SDFS(k)

F(k,2) = J : dt e F(k ). (4)
0

0

A. One-component system

density, =7, o"SK, 0)do,
1 N N M(K,t=0) = w2(K) (k) 2, (7
pi(t) = mz exik - ()]
/IN¢=1 N - N N N
N(k,t=0)= w4(k)w2(k)_l - wz(k)wo(k)‘l, (8)

of the system composed & particles at positions’(t), _ _ _ _
which are enclosed in a volumé so that the ionic number With again equivalent expressions for the self-counterparts.
density isp=N/V. The initial value of the ISF is the static Moreover, these frequency moments up to the fourth can be

structure factorS(k), which is directly related to the pair determined from the knowledge of only the temperafliye
distribution functiong(r): the atomic mass, the interatomic pair potengét), and the

static structure, i.eg(r) and S(k).
_ _ . > A useful feature of a memory function is that it decays in
F(k0)=Sk =1 +pJ drfg(r) - Llexd-ik-rl. (1) time more rapidly than the function from which it originates.
o S ) . Based on this, it seems plausible that at some level of the
A similar separation into two terms is also possible for allhjerarchy of memory functions an approximation where the

times, memory function is just a Diraé function att=0 should be
_ a good ansatz. In the viscoelastic model the level at which
FkD) =Pkt + Fo(k ), @ this ansatz is taken is the third, i.e., it is assumed that
where we have introduced the self—intermediate scattering R R . R
function (SISP F4(k,t), and the distinct intermediate scatter- K(k,t) =K(k)&(t) O K(k,2) =K(k),
ing functionF4(k,t), which obviously have the initial values
Fo(k,00=1,F4(k,00=S(k)-1. The SISF is of interest by it- Ko(K,t) = K(K)o(t) O Ky(k,2) = Kg(K). (9)
self, since it is the basic magnitude that describes the one- . .
particle dynamic behavior of the system. Explicit expressions oK(k) and K (k) in terms of the

The dynamic structure fact¢DSH Sk, w) and the self- same magnitudes as the frequency moments can be obtained
dynamic structure factofSDSH Sy(k,w) are obtained from [3,4] by imposing that in the free-patrticle limik— ) the
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theory recovers the known exa&k,w=0)=S(k,w=0). complex terms and therefore the associated propagating

Further details are given in the next section. modes in the SDSF have often been neglected when the vis-
Introducing in Eq.(6) the higher order memory functions coelastic model has been applied to study the dynamic prop-
up to the third it is found that erties of one-component liquids. It may be argued whether

these modes are real or a mere artifact of the model because

~ F(Iz,t:O) P2(|Z,Z) the SDSF describe the one-particle behavior of the system.
Fk2 = - EPEEN (10 However, the close connection between collective and single
7+ M Py(k.2) particle properties in dense systems could induce the appear-
N(k,t=0) ance of these modes. In any case, we stress that, to our
Zt———— knowledge, no detailed study of this possibility has yet been
z+K(k) carried out.

where Pn(lz,z) denotes a real polynomial in of degreen.
Making a partial fraction decomposition of this expression,
and denoting by, the roots ofP4(k,z), which, by the way, The generaliz?]tifon of (tjhe foregoir:'%formallism to birllary
=~ systems is straightforward. We consid¢iparticles in a vol-
are the same as the rootso#M(k,2), we have umeV (therefore with number densip=N/V), composed of

B. Binary system: Ashcroft-Langreth partials

. 3 A R 3 two specieqi=1,2) which are characterized by the number
Fk2)=> —— 0 F(kt) =, A exd zt] (11 of particlesN;, or concentratiorx;=N;/N, the atomic masses
i=1 277 i=1 m;, and ionic partial number densitips=x;p. The interaction

where thez and theA, appear either as real or in complex between particles of type and | is described by effective

. 4 a ppear PeX i teratomic pair potentialg;(r) and the static structure by
conjugate pairs. Therefore either the three roots are real %e partial pair distribution functiong; (r)
j .

one is real and the other two are a complex conjugate pair. | We start f the Fourier t ¢ £ th dial mi
all practical situations the latter is the case, and then the roots € start from the Fourier transform of the partial micro-

are interpreted as describing a diffusive mode and a pair oicopic number densities, defined as

damped propagating modes, much the same as in the hydro- , 1 N; o
dynamic model, although fok values outside this regime. p(kJ)(t) =— Y exdik-f®] (=12 (12
The DSF is then a sum of three Lorentzian functions, one VNj =1

centered atv=0 which corresponds to the real root, and thef

other two centered at the imaginary parts of the complexrom which the partial intermediate scattering functions

conjugate pair. Fij(lz,t) are obtained as
At small k, the functional form of the dynamic magni- T PR P
tudes within the viscoelastic model coincides with that of the Fij(k ) ={p, (Dp_(0)) = [F(kD)]; 13

hydrodynamic model, which is known to be accurate in this ) ] . -

region. Futhermore, the viscoelastic modes beh@e a where the last equation defines th& 2 matrix F(k,t). The

function of k) much in the same way as the hydrodynamici”itia| value of this.matrix reduces to the matrix of Ashcroft-

modes. However, in spite of the previous similarities, there-angreth(AL) partial structure factors,

are basic differences between the viscoelastic and the hydro- N N

dynamic models. They are better understood if the derivation F(k,t=0)=S(k), (14

of both models is made by an alternative route using thghere

generalized modes approa¢h]. Here one considers the

equations of motion of several dynamic magnitudes, namely, - . . - ~ -

temperature(or energy fluctuations, density fluctuations, [S(k)T;; = S;(k) = 5 +(Xixi)l/2pf dr[gy(r) - Llexd - ik - f].

current fluctuations, and stress tensor fluctuations. The vis-

coelastic model follows from considering couplings among (15

the last three variables and ignoring their coupling with tem-As in the case of one-component systems, a similar separa-

perature fluctuations. The hydrodynamic model follows fromtion into two terms is possible for all times, defining the self

considering couplings between the first three magnitudes anghd distinct parts of the partial ISFs:

ignoring their coupling to the stress tensor fluctuations. A . . .

parameter quantifying the coupling between density and tem- F(k,t) = Fy(k,t) + F4(k,t),

perature fluctuations is the specific heat rapeC,/C,. If

y~1 the coupling is weak and the viscoelastic model is S - 12 >

expected to be accurate; otherwise the model is expected to Fij(k D) = 8Fs; (K D) + (%) Faj (k). (16)

fail especially at smalk. Equations(3)«8) remain formally the same, although now
Within the viscoelastic model, the analytical structure ofall the magnitudes in the equations are matrices, the products

the self-functions, i.eF4(k,z), the SISF and the SDSF, is the are to be understood as matrix products, and the exponent -1

same as that of the equivalent collective counterparts. Howmeans the matrix inverse. For instance, the memory function

ever, the amplitude of the real coefficient associated with thenatrix obeys in the time and the Laplace domains the equa-

real root is usually much greater than the amplitudes of théions
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d_.: ' - - - 2. R
d—tF(k,t)z—f dr Mk, DF(k,t-7), (17) M(k,t)=<l —EN(k,t=0)+--->M(k,t=0). (26)
0
-~ - oo The specific approximation we make fM(IZ,t) to perform
F(k2)=[zl +M (k2] F(kt=0), (18)  the integral is
wherel is the unit matrix. . 2 . .
The matrices of frequency moments are given®y M (Kk,t) = exp(— EN(k’t = 0)>M (k,t=0). (27)
- - - T
[0(0)]; =Sj(k), [w*(K)]; =6 kz%, (19 It is precisely at this point where the previous attempt to

generalize the viscoelastic moddl] failed, since a similar
P approximation was made at the level of the matrix elements
[w“(|2):|IJ =8 k2 keT <3k2kBT+E X"pf drg;(F) ‘P'f(F)) M;;(k,t) only, and not for the matrisvi (k,t) itself, which is
obviously wrong because we are dealing with matrix prod-
ucts.

kgT (N ~ -
- (X.XJ)llzkz—pJ drg; ( F)cos(kr*)ﬁ]— Within this approximatiorM (k,z=0) would be given by
i, Z3 the time integral of i ion ti i
gral of the exponential function times the matrix
-8l ke T 51 3K%sT + > xxi0(K) M (k,t=0). Trying to correct the inaccuracies that might have
im; 9 B (A been introduced by this approximation, this value is premul-

s tiplied by a matrix= of constants to be determined later. In
~ (%)) XL:iJ(k)} (20) this way an explicit expression fdt (k) is found in terms of
the initial values of the second order memory functions:
where T is the temperaturekg is Boltzmann's constantz
denotes the direction df, and the last equality defines the K(Iz) - N(IZt:O)E f
functions x;; and ;. ' 0
The hierarchy of memory function matrices is again trun-

©

2 -
dtexp(—EN(k,t:O)). (29

cated at the third level, setting The determination oE is carried out by imposing that in the
. . . . free-particle limit(k— ) the dynamic structure factor ma-
K(k,t)=K(k)a(t) O K(k,z) =K (k) (21) trix evaluated at zero frequency recovers the exact free-gas
so that explicitly we have for the ISF matrix and the first andresult, he
second order memory function matrices the relatit®) and 1 m \¥2
- - . [S(k = O)]” (2 12k T) (29)
M(k,2) =[zl +N(k,2]* M(kt=0), (22) B

leading to the resulE=(2y2/m)l. In the Appendix we give
N(ﬁ,z) =[z + K(ﬁ)]—l N(Iz,t =0), (23) details of this derivation and explicit expressions for the ma-

. L . . . trix elements oiK(IZ).
with the initial values of the memory function matrices given ) ) o~ )
in terms of the frequency moments matrices as in Egp. Turning now to the analytic behavior &f(k,z) we see in
and(8). In order to provide explicit expressions for the ma- Ed. (18) that it is determined by the inverse of the matrix

trix elements 0ﬂ<(k we follow Loveseys argumenfg 4] [Zl +M (k Z)] namely, the transpose of the adJOInt divided by

Settingz=0 in Egs.(22) and(23) we have the determinant. Therefore, all tI”F?;j k,z) have the same
- o . analytic behavior, which is determined by the solutions of
M(k,z=0)=N(k,z=0)"* M(k,t = 0) the equation

=[KK™NKt=0]*M(kt=0) defzl + M (k,2)]=0. (30)

-

=N(kt= K(k)M(k’I_O) (24) As in the one-component case, this determinant is a real
and therefore rational function, whose form is obtained by writing down
explicitly the equations for the memory function matrices up
K (K) = N(k,t = 0)M (k,z= O)M (k,t = 0)2. (25)  to the third, leading now to an expression of the type
~ . . . Pe(k,2)/ P4(k,z). Consequently there will be six roots, which
The value oM (k,z=0)=f; dt M(k,t) is then assumed to i, principle may appearttogether with the corresponding
be rather insensitive to the detailed shape ofhgk,t) and  amplitude matricesas six real values, four real values and a
therefore a reasonable estimate can be obtained from an apemplex conjugate pair, two real values and two complex
proximation that satisfies its correct short time behavior ob€onjugate pairs, or three complex conjugate pairs. Therefore
tained by a simple Taylor expansion, namely, we have
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o .8 ( Sk ch(k)/(xlxz)”z)
—2_ . —E‘ . : k) =
Fla= gz h Flo=gAedat G S0\ i) Sl 34

- . . and
where theA; are thek-dependent X 2 amplitude matrices.

In the actual calculations made for liquid Li-Na], as well (Ve Vx
as those carried out in this paper, we found forkalivo real X=X"=| — ]
roots and two pairs of complex conjugate roots, at variance Ve TV

with some other calculations where one of the complex con- All other BT magnitudesintermediate scattering func-
jugate pair transforms into two real roots below a certaintions, first, second and third memory functions, frequency
smallk value[7,8]. All roots have negative real parfg], S0 moments, etg.are defined in the same way, pre- and post-

we can rewrite the previous equation as multiplying the corresponding matrix of AL magnitudes by
x x the matrixX; for instance, the BT partial ISFs are defined by
Ei(k2)= AL AL B B G the matrix F(K, t)
R O S TP CI B 2 Y
D. Fikt) =X F(k,t)X = Fy(k,t) + Fy(k,1), (35
+—1, (32 _ _ .
z+ 27 which leads tadropping the arguments of the functigns
where thelZ—dependent coefficientd;; andB;; are complex, Fan= DXFs 1+ XoFs 2k + IX4Fq .11+ 20GFg.12+ X5Fq 22}
while C; and D; are real. The complex rootg"(k) (36)

=T +iwd(K)(j=1,2 describe propagation, where the

real partl'l)(k) represents damping whereas the imaginary Fy.
part w(s”(k) represents the propagation. A set of two complex (x;x,)/?
conjugate roots represents propagation in opposite directions.

The real roots 21(k)(j =3, 4) stand for purely diffusive pro- +X(Fa 12~ Fa22 I} (37)
cesses. Out of the six roots, only four go to zero whken and

—0; this coincides with the behavior of the four hydrody-

namic roots predicted by the hydrodynamic equations for €€ = IxFg 1+ XiFgp) + {XXo[ Fo 11— 2F g 10+ Fq22]1,

binary mixtures. Again we stress that although the srkall X1X2

behavior of the four viscoelastic modes is similar to the hy- (39)
drodynamic ones, there are quantitative differences between i ) ]

them based on the same reason as in the one-componé’H’i‘ere the first braces in each equation erjcl_ose the BT SISFs
case, name|y, the neg|ect of Coup"ng with the energy ﬂuc_and the -Second b-races enclose the BT dlSt-lnCt |SFS
tuations. As in one-component liquids, the viscoelastic mode| The viscoelastic model for the BT functions is then de-
is expected to work for systems where this coupling is weakfined by the relations

={(X1%2) 1/2(Fs,1 —Fso)}b+ {(X1X2)1/2[X1(Fd,11 —Fg12

i.e., those with specific heat ratip~ 1. The other two vis- - ~ e

coelastic roots hapve a finite valu?: whiern> 0, while the cor- Flk2) =[2 + Mk 2] F(kt=0), (39)
responding amplitudes vanish in this limit; this is the typical - . . R

behavior of kinetic modes. The six roots lead t&gk, w) M(k2) =[2 + Nk 2] M(kt=0), (40)
given as a sum of six Lorentzians, two centeredha0 and

the other four aw= iw(sj)(k)(j =1,2). N2 =[2 + KKTNVKt=0), (41)

C. Binary system: Bhatia-Thornton partials

- - _ 2 .
An alternative description of the structure of binary alloys K(k) = Nk,t=0Z= f dt exp(— EN(k’t = 0)). (42)
is provided by the so called Bhatia-Thornt@il) functions.
The BT static partial structure factors, namely, number-

number Syn(k), number-concentration Sy(k), and Flkt=0)= Q%K) =S(K), (43
concentration-concentratiof..(k) partial structure factors,
describe the correlations among fluctuations in number den- M(Iz,t =0) :QZ(Iz)QO(Iz)‘l, (44)

sity (irrespective of chemical compositipand concentration

density, and are linear combinations of the AL partial struc-
ture factorsS;(k). These relations are most compactly writ-
ten if one defines the matri$(k) of modified BT partial . .
structure factors in terms of the matr(k) of AL partial Q"(k) =X "(K)X, (46)
structure factors:

Nk,t=0) = Q4K Q2K - 02AKQ%K)™, (45

or explicitly
S§=XSX (33 o =k2kT(ﬁ+&)
where NN Blm my/)’

041201-5



ANENTO et al.
X1 X2
0Z.= kszT(rr—]Z + E) :
1 1
0= ksz-r(Xle)l/z(Hl - E) (47)
and
Qi ( X1 ) ( 1 1 )2
=| =5+ =5 |3K%*KaT + XpXp| — = —
kszT mi m% B 142 m, m X12
2
( 2(X11 XL+ 2 (X12 XL:12)
my
2
X
+ n—%(Xzz‘ XL;22)),
05 _ (ﬁ N ﬁ)3kzk T (ﬁ N 2)2
kaBT - mg m% B m, my X12

1 2
+ X1X2<ﬁ()(11‘ XL11 ~ R(Xlz_ XL;lZ)
1

1
+ R(Xzz‘ XL;22)> )

2

Q 1 1 X1 Xlz)
- 5 -| 3k%kgT + X (— -=
k%KgT(X1%0) 12 ( m% m%) Bl T m% m%

X12  X22 XL XLz

Tl TS T S T X F -
m;  m ;M

_ x2< XL12 XL gz) (48)
mmy m;

D. Reduction to the one-component case

In the case of a pseudobinary mixture, when all the par-

PHYSICAL REVIEW E 70, 041201(2004

small, of the orde2—3) x 1072, reflecting a small value of
the isothermal compressibility. For a pseudobinary system,
we therefore obtain that, except for very dilute mixtures, the
smallk values of the partial static structure factors are domi-
nated by the first terms of Eq&9), which take on signifi-
cantly higher values than that of the structure factor of the
one-component liquid.

The situation concerning the ISFs is similar. According to
their definition [see Eq.(16)], we haveFg;(k,t)=F,(k,t)
=F4(k,t), which is the SISF of the real one-component lig-
uid, andFg 11(K,t) =Fg 2k, t) =Fg 12(k, t) =F4(k,t), which is
the distinct ISF of the real one-component liquid. Therefore
the AL partial ISFs are given by

Fij(lz;t) = 5|st(|2.'[) + (Xin)lled(E,t),

and explicitly

F1a(kt) = xFe(k,t) + X, F (K, 1),
Faa(k,t) = xqFe(K,t) + XF (K, ),

Fia(k t) = = (X% Y2k, 1) + (X Y2F (K 1), (50)

which is an awkward relation that induces a behavior of the
partial ISFs very different from that of the real one-
component liquid. On the other hand the BT partial ISFs
become

Fan(Kit) = (g + Xp)Fo(K, 1) + (X + Xp)2Fg(K, 1)
=Fy(k,t) + Fy(K,t)

=F(k 1), (51)
Frekit) =0, (52)
Fedk,)/(x%0) = (% + X)F(k) =Fg(k,t),  (53)

ticles are of the same type but are labeled differently, all the
partial pair distribution functions reduce to that of the realthat is, the cross function vanishes, the number-number func-

one-component liquid, i.e.,gy1(r)=g,(r)=gq(r) =g(r).

tion reduces to the ISF of the real one-component liquid, and

However, the AL partial structure factor, do not coincidethe concentration-concentration function, properly normal-

with that of the real one-component syst&k), but
S;j(k) = & + (xx)YS(k) - 1].
Explicitly we have
S11(K) =%, +x;S(K),
SpaK) = %1 + %5(K),

S1a(K) = = (Xg%0) Y2+ (X1 %) Y2S(K) . (49)

ized, reduces to the SISF of the real one-component system.
Coming to the viscoelastic model, in particular in the BT
formulation, we note that all the magnitudes are determined
by the frequency moment matrices. In a pseudobinary system
we havem; =m,, and all they;; reduce toy which is obtained
by settingg;;(r)=g(r) and¢;;(r)=¢(r); also by the same pro-
cedure, all they,.; reduce toy,. Then all the frequency
moment matrices in the BT formulation become diagonal,
and therefore the same occurs to all the other matrices, so
that the matrix operations in fact become the same operations
on the diagonal elements of the matrices, i.e.,Nifeand the

The BT partial structure factors, on the other hand, behavec functions.

more simply, because we now haS8g\(k)=S(k), Sy(k)=0,
and S.(K)/ (x1Xp) = 1.

In many one-component systeigiis particular liquid met-
als near the triple poipthe value ofS(k) for smallk is rather

In particular we have

[3k2kBT +x(K) = x (K] (54)
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) particles and in the case of /&b with 600 particles for most

[3kkgT + x(K)] (55 k values and with 11 000 particles for the smallest ones
(kmin=0.10 A_l).

which are, respectively, the fourth frequency moments of the The difference between the AL ISFs of the two types of

DSF and the SDSF of the one-component system. Likewisgystem is striking: while LiPb hasF;;(k,t), and in particular

KT the Li-Li partial, that decay more or less rapidly with time,
Q,'{IN -8 - Qgc, (56) similar to the behavior of one-component systemg;ig, 3
m on the other hand shows;;(k,t) which have much larger

which again are the second frequency moments of the DSFagnitudes and decay much more slowly, in practice making
and the SDSF of the One_component System’ and as V\)@ry difficult the Fourier transformation that leads to the
stated beforefy=Suw(k)=Sk) and Q2=S(K)/(xx;)=1, ~DSFs. o _ _
which are the corresponding zeroth frequency moments of A Proper description of such different behaviors, along
the DSF and the SDSF of the one-component system, respefith the case already studied of phase separating systems
tively. like Lig gdNag 31 [2], would therefore provide reliability to the
Therefore, the present formulation of the viscoelasticViscoelastic model. _
model for the collective dynamic properties of binary mix-  The static structure and the frequency moments, which
tures recovers, in the case of a pseudobinary system, not onfif® & required input of the viscoelastic model for the calcu-
the viscoelastic model for the collective properties of thelation of the dynamic properties, have been computed using
underlying one-component system, through the numberh€ variational modified hypernetted chaMHNC) ap-
number BT functions, but also the viscoelastic model for itsProximation[17] which reproduces rather well the simula-
single particle properties, through the concentrationtion results, although small differences can and do appear in
concentration functions. Moreover, the determinant thafh€ structural functions, which show up, for instance, in a
leads to the different modes factorizes into two terms, on&Mall mismatch of the initial theoretical and simulation val-
that includes the modes of the DSF with the other term ac4es Of the ISFs. While it would be possible to use the simu-
counting for the modes of the SDSF of the one-componeni@ted ; (k) instead of the VMHNC ones, the calculation by

system; this implies that both sets of modes are decoup|ed$imulation of the fourth frequency moments is rather unreli-
able.

Ill. RESULTS We recall that the viscoelastic model is expected to be
' accurate for systems with~ 1. Generalized hydrodynamics
In this section we study three systems and compare thealculations ofy have been performed for liquid Lil8],
results of the viscoelastic model with those obtained by moliquid Pb[19], and liquid Na-K and K-Cs alloyf20], lead-
lecular dynamics simulations. ing in all cases toy values not far from 1. These results give
The first is a pseudobinary system, in which all particlessome support to the application of the viscoelastic model to
are in fact the same type, but half of them are labeled as liquid metals and alloys, in contrast to other systems like
and the other half as &;=x,=0.5). Specifically the system Lennard-Jones liquidg/,8] wherey is larger.
is representative ofLi at T=725 K andp=0.042 A3, and
the effective pair potentials usedll three identical were
obtained using the empty core pseudopoterféiglwith core ) ) _
radius 1.44 A. Some MD results for this system have been Due to the particular concentratiog=x,=0.5, an addi-
reported elsewhergl0] and are extended here. They havetional symmetry appears in the system, that implies that
been obtained using 668 particles in a cubic box with peri-Si1(K)=S(K), F1a(k,t)=F2(k,t) and so on.
odic boundary conditions. Figure 1 shows the partial structure factors obtained from
The other two cases Correspond to two Li-based a||0yst,he simulation and the VMHNC theory, which are practically
Liy-Mgo 5 Which is a typical quasi-ideal mixture, and,Pb, ~ coincident. The first thing to note is that, as stated above, the
which is a reference case for a class of compound formingmallk values attained by th&;(k) are in magnitude close to
alloys with preionic ordering. The temperatures and densitie§.5 (the concentrationswhich is one order of magnitude
are T=887 K and p=0.040 711 A3 for Lio-Mgos and T  larger than the structure factor of the corresponding one-
=1085 K andp=0.045 58 A3 for Li,Pb. The interatomic component system in the same region. This will imply a
pair potentials were obtained in the case qf Mgy 5 within much larger initial value of the partial ISFs of the system as
the neutral pseudoatom meth¢tll] while in the case of compared to the ISF of the one-component system. The
Li,Pb they were taken from Copesta&eal. [12]. The col-  Fj(k,t) are shown in Fig. 2, where we have plotted both the
lective propeties of the kMg, 5 alloy have been studied by MD results and the viscoelastic ones. The results for sknall
Anento and Padr¢g13,14, and those of LiPb by several are markedly different from thE(k,t) of the one-component
authors[15,16, the latter being the first system where the system, and not only in the initial value. The latter shows
fast sound phenomenon was observed, which consists in treear oscillations around zero, whereas the partial ISFs of the
appearance of a peak in the Li-Li dynamic structure factorpseudobinary system show a large diffusive component
absent in the Pb-Pb one, with a very high frequency similawhich decays very slowly.
to that of pure Li. In this paper we include MD results ob-  The reason for this behavior can be found in the roots and
tained for both systems, in the case of {¥gy 3 with 570  corresponding amplitudes that are obtained within the vis-

K2k T
m2

4 _
Qcc_

A. Model 1: Pseudobinary system
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FIG. 1. Static partial structure factors for pseudobinary Li. Full k@A) k@A)
line and circles,S;1(k) =Sy,(k); dashed line and triangle§;»(k);
dotted line and SquareS, one_component Syﬁ()’] The lines are FIG. 3. Roots of pseudobinary Li in the viscoelastic model. Full

: . ; - 1 : : 2 , . ,
theoretical results and the symbols denote MD simulation results.lines, o, and I'V; dashed linesw? and T'?; dotted line,Z%;
dash-dotted linez®.

coelastic model. The roots are plotted in Fig. 3, where we see
that one of the propagating roots vanishes inkk® limit,  since its contribution is the most slowly decaying one. More-
while the other remains nonzero in this limit. We recall thatover its amplitude is the largest for sméll as can be ob-
in a pseudobinary system the determinant that leads to theerved in Fig. 4. In fact we have plotted only the amplitudes
roots factors into two third degree polynomials, which cor-corresponding to the 11 partial, since due to the symmetry
respond to the modes of the DSF and the SDFS of the onémposed by the concentrations the amplitudes corresponding
component system respectively. The first propagating roofo the 22 partial are the same as the 11 ones, while we also
corresponds to the propagating mode in the DSF of the onerave thatA;,=A,;;, B;,=-B;;, C;,=C;;, D;5=—D;;. Note
component system, while the nonvanishing root is an unexthat B,; goes to 0 ak— 0, which is another characteristic
pected propagating mode that appears in the SDSF of thieature of the kinetic modes. It is also interesting to observe
one-component system. Of the remaining two real roots, thehe similarity betweerC,; and the structure factors. We can
largest one in magnitude for smélis the diffusive mode of therefore conclude that the extremely slow decayptk, t)
the DSF of the one-component system, whereas the smalleigta direct consequence of the influence of the single particle
one in magnitude corresponds to the diffusive mode of thelynamics on the behavior of the ISFs, and this is due to the
SDSF of the one-component system. It is precisely this lasfery definition of the AL partial ISFs. When one comes tothe
root that is responsible for the behavior of the pafiglk,t), BT partials no such problems arise, since there is a complete
decoupling of the single particle dynamics, which goes ex-

06T 06T 2pT T TTT
&% -°°°°°°°°°°o°°°°°°; i, IAijl ’ IBijl Gy IDijI
w041 | 02 15
o3l t 1.1, 0 1
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43 0F, 0™ ogeod) 0-‘mw LS., ] P R T e 4
_003'.7b‘i°|.|.|.' P T P [ ow ;i dos
70 02040608 1 0 0102030405 0 02040608 """" |
t(ps)
. . . . s ., eseteiviniinit : I . 0
FIG. 2. Partial ISFs for pseudobinary Li. Full liné®p pane), 0 1 2 3 4 5
F11(k,t)=F,x(k, 1), dashed lingmiddle pane), F1,(k,t); dotted line k@A™

(bottom panel Fyn(k,t), which coincides with the one-component

systemF(k,t). The symbols are the corresponding MD results. Left  FIG. 4. Amplitudes of the different modes of pseudobinary Li in
column, k=0.23 A™1; middle column,k=1.23 A™; right column,  the viscoelastic model. Full lined;; dashed linesB,;; dotted
k=251 A% lines, Cyy; dash-dotted lineDy ;.

041201-8



VISCOELASTIC MODEL FOR THE DYNAMIC.. PHYSICAL REVIEW E 70, 041201(2004

2 : .
C,(k,®) (A"/ps) Liy Mg, Li,Pb
i 2T T T T L I e N B
ST T o — [
4 e i L5
3 ERe ] NI | P —
I ] 04 ] g EAY:
2 b = r
L -y ] “ y
1 A 0.2 _ 0.5 d f\* -
..,' e \Xp T 1
10 2 Y. of 4\ i
PR N BRI
8 T T 2T 7T OS5 % 10
[ i &%
6F 2 - 15+ 08[- %%
- i o Q1
3 = pal

FIG. 6. Static partial structure factors forglzMgg 3 and LiyPb.
Full lines and circles,S;4(k); dotted lines and square§s(k);

N
T
]
0,.0...R
>
S
|
—
..E. T
',b.o-"‘"""'
PR IR B
=
~
T
P I I Y

K 4L
2 fragaiy 0 05F oF % 0.2.} dashed lines and triangleS; (k). The lines are theoretical results
0 T ST 0 0-. and the symbols denote MD simulation results.
0 20 40 0 40 8 120 0 40 80 120
-1
@ (ps ) rent of the one-component systemt the positions of the

peaks in the 11 and 12 functions, and in toecase(which is

FIG. 5. Partial currents for psgudob_lnary Li. Llnes_ are theo_retl-the self-current of the one-component systerthe position
cal results and symbols denote simulation data. Full line and circles

. . of the minimum of the 12 function.
(upper pang| Cq4(k, w)=Cys(k,w); dashed line and trianglgsip- .
per panel, Cpk,); dotted line and circles(lower panel, The appearance of the peak in the self-currents of the

Cun(k, @), which coincides with the one-component system ON€-COmponent system is very clear in the MD simulations,
C(k,w); dash-dotted line and triangledower pane), scaled ShOwing that also in the single particle properties of this

Cedk, ), which coincides with the one-component system SYStém there are indeed propagating contributions, of kinetic
Cdk, ). Left column, k=0.23 A% middle column,k=1.23 &%, ~ character. These modes had not been reported previously, at

right column,k=2.18 AL, least to our knowledge, since the focus has usually been put
on the initial value and the width of the SDSF of the systems,

clusively into the concentration-concentration partial, and thén@lyzing the behavior of these properties within the differ-
collective dynamics, which is exclusively responsible for the€nt theoretical approaches. The reproduction of these propa-

number-number partial. Obviously this complete decouplingd@ting modes by the viscoelastic mod#gr the single par-

is due to the ideal character of this system. ticle properties is therefo_re an mt_ere_stlng property of_thls
The Fourier transforms of the longitudinal current corre-theory, and warrants a wider application of the model in the

lation functions are directly related to the DSFs, through thénalysis of the single-particle properties of, at least, this type

relationC;; (k, w) = (w?/k?)S;(k, ») (and the same relation for of dense liquids.

the BT currents while they can be calculated independently

in the MD runs._They are especiall_y useful in the cases Whe_re B. Li-based alloys: Ideal and compound forming mixtures

a slowly decaying term appears in the ISFs which compli-

cates the computation of the DSFs, while the multiplication In the following we will denote Li as component 1. The

by w? depletes the low frequency modes and enhances theartial static structure factors of both liquid alloys are shown

high frequency ones. In Fig. 5 we show the functionsin Fig. 6. Those corresponding tod4Mgo ; are similar in

Cij(k,») and also the BT ones. We always find a clear peal€haracter to those of the pseudobinary alloy, except for the

and a minimum irC,,(k, »), while there is a clear maximum difference in concentration, so the values $f(k=0) are

in Cy4(k,w) at the position of the peak oF;,(Kk,®), and larger than that of a one—compon_ent sys?em. Qn the other

sometimes a shoulder at the position of the minimum. ThesBand the results for LPb are very different; in particular, the

are of course the remnants of the two propagating modedalues ofS;(k=0) are all three similar in magnitude to the

The coincidence of the shoulder 6%,(k, ») with the mini- ~ case of a one-component system; moreover the di k)

mum of C;,(k, w) suggests that the second propagating modé@nd the coincident positions of the maximum (k) and

on top of being kinetic is optical in character, with the two the minimum ofSy(k) are indicative of a kind of ionic or-

“species” moving in opposite directions. The appearance oflering in the melt[22]. The corresponding ISFs are also

an optical mode in a pseudobinary liquid system resembles gfrikingly different for the two systems, especially for small

similar effect that appears for crystals: when a linear chairk, as observed in Figs. 7 and 8. As in the pseudobinary sys-

with equilibrium distancea is considered as a chain with tem, the ISFs of Lj;Mg, 3 have a very slowly decaying dif-

equilibrium distance & with a basis formed by two “differ- fusive term for smallk. In the case of LiPb, the slowly

ent” atoms separated by a distarcg21], then the first Bril- ~ decaying term is practically absent Fyj(k,t) and while

louin zone becomes half the original one, and the originathere is indeed such a term y,(k,t) and especially in

dispersion relation becomes folded into the new one leadinfr»2(k,t), it decays much more rapidly than inglzMgg 3 (ob-

to the optical mode. The BT currents on the other hand alserve they-axis scales in Figs. 7 and &ven though the Pb

ways show a single peak, in tidN case(which is the cur- ionic mass is much larger than the Mg one.
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0.9 (s

100

FIG. 9. Roots of Lj;Mgg 3 (thick lines and Li,Pb(thin lines in

the viscoelastic model. Full Iine&)(sl) andI'; dashed Iinesw(sz)

andI'@; dotted linesz®; dash-dotted lines?.

Again the reason for such behaviors can be traced back teletely dominated for alk by the smallest real root, and to a
the roots and the amplitudes of the modes associated with tgSSer extent by the low frequency root, the other two ampli-
three partials. The roots are shown in Fig. 9. We see that, d¥des being smaller, except in the case qfMgos in the
to the mass difference, the frequenoy) and damping’®@  fegion of the main peak of the cqrrespondmg structure factor
of the low frequency root are larger for J-Mgg 3 than for and for smallk, yvhere th_e z_ir_nplltude corresponding to the
Li,Pb, while the high frequency root and the larger real roof&/9€r real root is also significant. The case of fe(k,t)
have quite similar magnitude and variation witfor the two functions is rather similar, with the difference that for sniall
systems, being much more influenced by the masses of tHB Lio7/MJos the three amplitudes corresponding to the two
components and the thermodynamic state than by the paPfoPagating roots and the larger real root are of similar mag-

ticular structure of the alloy. The smallest real raft also ~ nitude. Note again the striking similarity between the ampli-
behaves differently for Lj-Mgqs and Li,Pb, staying much tudes of the smallest real root and the structure factors, with

closer tol'™ for the latter. For smalk, in particular,z2¥ is D12 @nd D, following, respectively,Syo(k) and S;,(k). The
significantly larger for LiPb than for Lj Mgg.s Which ex- different behavior of these structure factors for the two sys-

plains the faster decay &,,(k,t) andFay(k, 1) in LisPb. tems implies now that the amplitude of the diffusive mode is
Figures 10-12 show the amplitudes fey(k,t). The first much smaller for LjPb than for LyMgos As for the
noticeable feature is that thEy(k,t) functions are com- F11(k,t) functions, the structure of the amplitudes is richer.
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FIG. 13. Dynamic structure factors in units of picoseconds for
Lig Mg 3 (upper pangland LiyPb (lower panel at wave vectors
FIG. 11. Amplitudes of the different modes &F,(k,t) for ~ shown in the graphs. Full linesyy(k, »); dashed linesS;y(k, w);

Lig Mgy s (thick lines and Li;Pb (thin lines in the viscoelastic ~ dotted lines,S;;(k, ). The thin dash-dotted line denotes the low
model. Full lines,A;,; dashed linesB,,; dotted lines,C;,; dash-  frequency contribution t&;(k, w) and the thin full line is the cor-
dotted linesDy. responding high frequency contribution, which is negligible for the
lowestk. Symbols denote simulation data at wave vectors 0.53 and
0.65 A™! for Li,Pb. For these graphS,,(k,w) have been shifted

For medium and largk the dominant term ig®, the larger
upward by 0.0001 to improve visibility.

real root, with its amplitudeC,; following S;4(k). For small

k, on the other hand, the situation is differebt;; is domi- _ . _
nant for Liy ;Mgg s while for Li,Pb Cy; is still the dominant low and/or high frequency peaks in the partial DSFs.

contribution, with an intermediate region around 1.5A In Fig. 13 we show the DSFs for both alloys at a small
whereD;; is of similar magnitude. Therefore the overall de- Wave vector, a wave vector in the transition region, and at a
cay of F14(k,1) is dictated byz®, which being much larger largerk. In t_he case of LjPb we observe at the smal!ésa
thanz® induces a much faster decay; note the smaller scalélear peak inS;;(k, w) and Sy5(k,w) and a shoulder in the
in the time axis forF,(k,t) in Fig. 8. Sk, w), all at the same frequency, akin to hydrodynamic
It is also interesting to observe that out of the two propa-sound propagation, even though the presence of the diffusive
gating roots, the dominant one for very smills the low term masks the propagating mode ag(k, ) shows no
frequency one, and therefore in this limit all three partialsside peak. For largét we find a prominent peak i6;;(k, w)
oscillate with the same frequency, as happens within the hydue to the high frequency contribution, while there is no
drodynamic model. There is, however, a transition from thisndication of any peak ir§,,(k, w). This appearance of high
behavior to the dominance of the high frequency modekfor frequency peaks in the DSF of the light compongi) and
values around 0.2 & for Li,Pb and around 0.57A for its absence in the DSF of the heavy compor{gas has been

Lig /Mg s This will have a direct impact on the presence ofassociated with the so called “fast sound” phenomenon,
which as we see appears naturally within the viscoelastic
[A,,l, By, C,, » D,y model as a consequence of the two propagating roots of the
- 2 model. In the case of kMg 5 the diffusive contribution to
Sj(k, w) is very large for smalk, and completely covers the
(low frequency propagating contribution, so that no side
FA s peaks appear in the DSFs even for rather srkalalues.
FEEE I\ | Anyhow this contribution is indeed present and shows up as
A N\ a rather weak shoulder at the same frequency in all three
daad / N/ AT 1 Sj(k,w). For largerk the higher frequency component be-
N N, comes more important i8;;(k, w) and due to its larger fre-
-7 qguency is less covered by the diffusive contribution, so that
/ —05 for sufficiently largek a peak finally develops i1$;;(k, w),
s | whereasS,,(k, w), whose dominant propagating contribution
________ is the low frequency one, never develops a side peak. There-
R B S Sy S s fore the situation is rather similar to the case offth, except
that the separation between the frequencies of the low and
the high frequency modes is smaller due to the smaller mass
FIG. 12. Amplitudes of the different modes &, (k,t) for ~ of Mg, and that the magnitude of the diffusive mode in
Lip Mgg 3 (thick lines and Li,Pb (thin lines in the viscoelastic  Lig7Mgg 3 definitely obscures the analysis.
model. Full lines,A,,; dashed linesB,,; dotted lines,C,,; dash- Coming to the BT functions, one can expect that
dotted lines,Dys. Lig Mg s being a quasi-ideal system, should behave simi-
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FIG. 14. Bhatia-Thornton ISFs for §iMg, 5. Thek values for FIG. 16. Bhatia-Thornton ISFs for Pb. Thek values for the

the different columns are the same as in Fig. 7. Note in some casélifferent columns are the same as in Fig. 8. Lines are theoretical
the different scales in the time axis fBfy(k, t). Lines are theoret- results and symbols are simulation data. Note in some cases the
ical results and symbols are simulation data. different scales in the time axis féiyn(k,t).

: ; : : is i tant to note that the magnitude of these peaks is very
larly to the pseudobinary system, i.e., the single particle dy!S 'MPOr K
namics should dominate the concentration-concentration paf'—m_a”’ _around 1@_' compared to the value cStC(k,_w—O),
tials, while the collective dynamics should dominate theWh'3Ch IS 2far outside the range of the graph, being around
number-number partials. This is indeed what happens, a&’ —10° depending on the wave vector. We stress that the
shown in Fig. 14, where we see tHagy(k, t) in fact decays reproduction of the different behaviors exhibited by the two

much faster than the partials, which is similar to the behaviof"‘“‘?ys’ even at th_e Ie\_/el of such_sr_nall details, represents a
obtained for the pseudobinary systef,(k,t) is practically stringent test which is well satisfied by the viscoelastic
purely diffusive, as happens for the SISF of a one-compone od_el. - .
system, andFy.(k,t) is very much smaller than the two other Finally we address the longitudinal current correlation
) Neb™ = . . functions. In Fig. 18 we show the AL and the BT functions

partials. Obviously this is also reflected in the dynamic struc-for Li M and in Fia. 19 those corresponding ta.Pb
ture factors, which are plotted in Fig. 15y\(k,®) shows -l0.7V90.3 ' F1g. L corresp 9 1OfD.

| hould K hig.(k.w) sh ither sid Again the case of lgi-Mgg 3 is very similar to pseudobinary
¢ eali shou ﬁrs Igr pea s,hw '%C r’lw s OI:N;neh' er Sr'] € Li. For smallk, the three AL partials have a peak at a com-
|F\)/|e|§ é n(i(r tS _out er(sno_te tt at Ilor the slr_naz)le FS O_WHtt € mon frequency. On the other har@,,(k, w) exhibits both a
form) N(an, t)hles c%%t?a?rljyth(:e aca(\)g\:e Ej:)]{eE:i?) ig di(;flgrlggt r?ss- maximum and a minimum for ak, whose positions coincide

. y 4 ’

shown in Figs. 16 and 1Fyy(k,t) now exhibits a certain with the maxima(or shoulders at smal) of Cyy(k, @) and

e _— C,,(k,w), respectively. The behavior of the BT currents is
diffusive component anB..(k, w) does show oscillations. As 22K, ©) P y

! . also similar to pseudobinary LCyn(k,w) shows only one
a consequence&.(k, w) presents well-defined side peaks or eak, andC,(k, ) also shows only one peak, although since

shoulders, indicative of propagating concentration modes. lﬁm decoupling number-concentration is not complete, a clear
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7 20% - 40 . 315 . g. 0
— 1 4 < é . [
J or 1% ] 20 1 4F 20
1 T 1 1 “ ST 1 2 :
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T L VLR 10_'3"|'|'|'_ 04T 0STTeTy 3rTTTT
) 8 . 2 03F! J o4f 1 4 r 1
4 2L 4 1 6L 4 ] 8 Ura 1 03F } J 24 7]
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1 1 2F : w01 s o oif 1 &%M
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1 ¢t 1 oF I B o[ %, ] . [ o ]
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FIG. 15. Bhatia-Thornton DSFs for jMgg3 in units of FIG. 17. Bhatia-Thornton DSFs for \Rb in units of 10* ps.

1074 ps. Thek values for the different columns are the same as inThe k values for the different columns are the same as in Fig. 8.
Fig. 7. Lines are theoretical results and symbols are simulation datd.ines are theoretical results and symbols are simulation data.
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C,k,0) (Az/ps) small k) or a maximum(at largerk) in C;5(k,w). The BT
— : currents, on the other hand, always show a common maxi-

25 I mum at the high characteristic frequency and a maximum in
2 - Ceek, w), minimum in Cy4(k, w), at the low one. We there-
L5 ] fore see that in LiPbC_ .k, w) has a clear double peak struc-
YN 7 ture, each situated close to the low and high frequency roots
0'(5) Rt of the model.
SEE T 1S L2 IV. CONCLUSIONS
251 412 091 7 We have presented an extension of Lovesey'’s viscoelastic
1§: g 1% o6k £ ] model to binary mixtures that correctly recovers the same
M Aay 4 06 P 1 model for the one-component system in the case of pseudo-
ostE ] 031 03 e N, ] binary mixtures, including both the collective and the single
oL ol 1 eaiml ok el particle properties.
0 20 40 60 0 20406080100 0 30 60 90 120 We have observed in the MD simulations of this kind of
© (s ) system a clear appearance of propagating modes in the single

L , _ particle dynamic properties of the one-component system,
_FIG. 18. Longitudinal "current correlation functions for gnacifically in the longitudinal self-current correlation func-
Lig7Mgg s Lines are theoretical results and symbols are S|mulat|orh0n which the viscoelastic model reproduces correctly
dat?k U?pgr pr? ngli AShcrgﬂ'Langreth(lf art)ialds’ fu'é ”lne and dCirdeS’ Ir’u the case of alloys, the appearance of two propaéating
Ci1(k, w); dashed line and squareS;,(k, w); dotted line and tri- - '
angles,C,,(k,w) Lower panel: Bhatia-Thornton partials; full line re?g[ﬁ Icvm(?hr?:i?(l l; ?r?es dn:;utrﬁgy dtgng?:af::sef z?l:r?g Eihin?m-
and circles,Cyn(k, w); dashed line and squares, scaleg(k, w); ’ Xp IR > high fre-
dotted line and triangles, scaleég\(k,w). The k values for the quency propaggtlng contribution in the DSF of the ,I'ght com-
different columns are the same as in Fig. 7. ponent, appearing near thkevalues where the amplitudes of

the two propagating roots coincide. For smakehe ampli-

feature(a shoulder does also appear at the frequency of thetude of the high frequency component goes to zero and
maximum ofCyy(K, ®). In the case of LiPb it is evident that therefore all the DSFs have a component with a peak at a
the smallesk shown in the graph is already outside the hy-C0mmon frequency, namely, that of the smaller propagating

drodynamic region. For all thi values shown we observe root. Whether this component shows up as a peak or not in

two characteristic frequencies, a small one for which weth® DSFs depends strongly on the amplityded width of

have a maximum irC,,(k, ) and a maximuntat low k) or the diffusive contributions, which in some casgkke

o - LigsMgp 2 can cover the propagating contribution.
\?vhrirllr? I:?]erg(i";t ;a;?:;iglj?r: i(éu((kk' 0:))) ;nndd aar:ilr?irrlnl?rrr]\(eatat The viscoelastic model is able to reproduce the different
N behaviors of the ISFs of pseudobinary Li ang #N¥gg 3 on

2 one hand and LPb on the other. The extremely slow decay
Cij(k’m) A'fps) of the ISFs for the former two cases is dictated by the small
ML N L B B value and large amplitude associated with the smallest real
root of the model, which moreover in the case of pseudobi-
nary Li is strictly the single particle contribution. In the case
of Li,Pb a combination of factors leads to a more rapid de-
cay: first, the smallest real root is larger than i gy 5,
second, the amplitudes associated with this root in the 22 and
12 partials are much smaller than those ig-Mgg 3 due to

3 — 2 12 ——7——1— the behavior of the amplitudes which follow the correspond-
e 7 15k i ing partial structure factors; and third, in the case of the 11
12' ER 08 partial it is the larger real root that is the dominant one for

T 1 Ir 04 small k, leading therefore to a much faster overall decay.
o5k 305 b ¥ ’ Another important difference is the presence inRb of

17 s ‘?';:- Ix | RSas ofed o p_ropagating concentration modes, which are abser_1t in
0555529 0 30 6090120 0 30 60 9 L|0_7Mgo_3. The presenceéor absencgof qlear S|dg peaks in

(D(ps-l) S.(k,w) is neatly reproduced by the viscoelastic model, in

spite of their very small magnitudes.

FIG. 19. Longitudinal current correlation functions for,Bb. We conclude by stressing that although quantitative dif-
Lines are theoretical results and symbols are simulation data. Uppd@rences do appear between the results of the model and the
panel: Ashcroft-Langreth partials. Lower panel: Bhatia-ThorntonSimulations as a result of the approximations involved in the
partials. The meaning of the lines and symbols is the same as in ti@rmer, nevertheless the model reproduces accurately the
previous figure. Thé values for the different columns are the same main characteristic features of the dynamic properties of the
as in Fig. 8. systems studied, including very fine details in the peaks of

041201-13



ANENTO et al. PHYSICAL REVIEW E 70, 041201(2004

S.(k,w) and even unexpected peaks in the single particle P(IZ—>oc)=|
properties. We believe that this shows that the model is use- ’

ful and therefore warrants its application to the analysis of ) KT
data(possibly obtained by any other meas the dynamic M(k— »,t=0)]; = 5”.—*3,
properties of alloys, and on the single particle properties of m

one-component systems, which will complement the already
wide application of the model for the collective dynamics of

T m 1/2
one-component systems.

2 kgT
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APPENDIX K(K) = %TP(IQ)D(IZ)P(IZ)*. (A5)

Here, we derive the expressions for the matrigesnd

- The explicit expressions for the matrix eIementsKQfZ) are
K (k) in the case of a two-component system. In Sec. Il B,

these matrices were determined by the integral .92 le(E)Nzl(E)hilz(lz) + ,82(I2))\§’2(I2)
Kyi(k) = —= = = =
0 t2 R ] 5
[ exp(——N(k,tzO))_ T NNy + B0
0 2
) R 201y — 3 V2010
The exponential is easily performed after diagonalizing Klz(lz):/i_NH(k)ﬂ(—l)()[}\l a(k) A (k]
N(k,t=0). Denoting by{\;(k),\o(K)} and {x;(k),xx(K)} its VT Nyo(KINgy(K) + B(K)

eigenvalues and eigenvectors we can write
- - . o . ) 2N Y201 — \ 112
N(k,t - 0) - P(k)ND(k)P(k)_l (Al) K21(k) — /i_ N21(k)ﬂ(_|)()[)\l _)(k) )\2_) (k)]
VT Ny(KINRy(K) + B%(K)

where ND(IZ) is a diagonal matrix having the eigenvalues
{\1(k),\»(k)} on the diagonal, whereé!(IZ) is a matrix hav- ) N KN (ONY2(K) + BRIONY2(K
ing {x4(k),x,(k)} as its column vectors. The exponential is Koo(k) = i 12Nz (A7 () *+ BN K)

then straightforward and the wanted integral is readily evalu- v Ny2(KINy(K) + B2(K)
ated leading to

. (AB)

—_—

where theNij(IZ) are the matrix elements dﬂ(lZ,tzO), the
|\~/|(I2,z: 0)= %TE P(I?)D(IZ)P(IZ)‘l M(Iz,t: 0 (A2) eigenvalues are given by
N -1 - - N11(|2) - N22(|2)
where D(k) is a diagonal matrix with elements Al(k)'E[Nll(k)"LNZZ(k)]Jrl( 2
{V2/\(K),  y2/n,(k)} on the diagonal. Now, by using Eq.

1/2
(18), it is obtained that N (Iz)N (Q)}
12lK)N2 4 ,
~ - 2 P - -
F(k,z=0) = =[EP(K)D(KP(K) ™M (kt=0)]"F(k,t=0)
N - -
- 1 - - N11(K) = Noo(Kk)
(A3) Na(K) = JIN3(K) + NaolK)] - [(%
and by examining th&— oo limit of this equation, the ele- 12
ments of the matrixE are obtained. In particular we have + NlZ(IZ)Nﬂ(IZ)} (A7)
. 2Kk T
(k - N N N
Mlk= ) m and B(K) =\1(k) =Ny4(k).
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