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This paper presents the viscoelastic model for the Ashcroft-Langreth dynamic structure factors of liquid
binary mixtures. We also provide expressions for the Bhatia-Thornton dynamic structure factors and, within
these expressions, show how the model reproduces both the dynamic and the self–dynamic structure factors
corresponding to a one-component system in the appropriate limits(pseudobinary system or zero concentration
of one component). In particular we analyze the behavior of the concentration-concentration dynamic structure
factor and longitudinal current, and their corresponding counterparts in the one-component limit, namely, the
self–dynamic structure factor and self–longitudinal current. The results for several lithium alloys with different
ordering tendencies are compared with computer simulation data, leading to a good qualitative agreement, and
showing the natural appearance in the model of the fast sound phenomenon.
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I. INTRODUCTION

The development of inelastic neutron scattering(INS)
techniques opened up, around 40 years ago, the experimental
study of the dynamic properties of several condensed matter
systems, in particular of liquids. In principle the total scat-
tered intensity in an INS experiment includes both incoher-
ent and coherent contributions, which are related, respec-
tively, to the self–dynamic structure factors and the dynamic
structure factors. A clearcut separation of both contributions
is not always possible and in the analysis of the raw data it is
useful to have simple models for the dynamic and/or self–
dynamic structure factors in order to achieve such a separa-
tion through a numerical fitting procedure, and perform a
proper interpretation of the experimental data. Even in those
cases where there is coherent scattering only, it may happen
that the particular behavior of the dynamic structure factor as
a function of frequency obscures the analysis, for instance
when no clear side peaks appear; in this case again the avail-
ability of models for fitting helps in the interpretation of the
mechanisms controlling the behavior of the dynamic proper-
ties of the system. Similar problems are encountered when
the dynamic properties of liquid systems are studied by ei-
ther inelastic x-ray scattering(IXS) or molecular dynamics
(MD) simulations. Even though IXS produces coherent scat-
tering only, and MD provides very detailed information of
the properties of interest, nevertheless the interpretation of

the numerical data obtained is greatly aided if theoretical
models are available.

In this respect, and for pure systems(one-component sys-
tems), a prominent role has been played by the so called
viscoelastic model, introduced by Lovesey, which basically
describes the dynamic structure factor as a sum of three
Lorentzian functions of frequency, one of them representing
particle diffusion and the other two describing damped
propagation of collective excitations. This model applies for
intermediate wave vectorsk between those corresponding to
a hydrodynamic behavior(low k where the hydrodynamic
model is applicable) and those corresponding to an ideal gas
behavior(largek, where the free-particle model is correct). A
similar expression is also available for the self–dynamic
structure factor, but its use has been much more scarce in the
literature, although as we shall show below, the viscoelastic
model for the self–dynamic structure factor in fact has very
interesting properties that other models lack.

The case of mixtures is more complicated. Although both
the hydrodynamic and the free-particle models are readily
extended to mixtures, there is no well-behaved model so far
to describe the intermediatek range. A previous attempt to
extend the viscoelastic model to liquid mixtures[1] failed
because some errors in the derivation made it incorrect, and
therefore inapplicable. In particular the model did not re-
cover the one-component case for pseudobinary systems, i.e.,
those systems which are in fact one component, but with
some particles labeled differently from others(some of them
are named type 1 and the rest type 2).

In this paper we extend the viscoelastic model to mix-
tures, and in particular to binary mixtures, in a consistent
way which reduces to the correct one-component limit in the
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appropriate cases(pseudobinary mixture or zero concentra-
tion of one component). Moreover, we give expressions for
the so called Bhatia-Thornton dynamic structure factors,
which are very useful when discussing ordering properties of
binary systems. From these expressions it is easy to show the
reduction to the one-component case, leading not only to the
dynamic structure factor, but also to the self–dynamic struc-
ture factor of pure systems.

We compare the results of the model with MD data for
three different types of systems: the first is a pseudobinary
alloy, namely, pure liquid Li, the second corresponds to Li
-Mg, which is a typical quasi-ideal system, and finally the
third one corresponds to Li4Pb, which is an archetypical case
for a class of compound forming alloys. The case of systems
with tendency to phase separation has already been consid-
ered before[2], in the study of liquid Li0.61Na0.39, which is
again a typical phase separating mixture. Although appar-
ently trivial, the study of the pseudobinary case leads to in-
teresting conclusions regarding the behavior of the self–
dynamic structure factor, which vindicate the use of the
viscoelastic model for the self–dynamic structure factor of
one-component systems.

II. FORMALISM

A. One-component system

Here we merely recall the expressions for the dynamic
properties we are interested in for one-component systems.
The basic magnitude to be considered is the intermediate
scattering function(ISF), Fsk,td, which describes the collec-
tive dynamic behavior of the system and is defined as
Fsk,td=krkWstdr−kWs0dl, whererkWstd is the microscopic number
density,

rkWstd =
1

ÎN
o
,=1

N

expfikW · rW,stdg

of the system composed ofN particles at positionsrW,std,
which are enclosed in a volumeV, so that the ionic number
density isr=N/V. The initial value of the ISF is the static
structure factorSskd, which is directly related to the pair
distribution functiongsrd:

Fsk,0d = Sskd = 1 +rE drW fgsrd − 1gexpf− ikW · rWg. s1d

A similar separation into two terms is also possible for all
times,

Fsk,td = Fssk,td + Fdsk,td, s2d

where we have introduced the self–intermediate scattering
function (SISF) Fssk,td, and the distinct intermediate scatter-
ing functionFdsk,td, which obviously have the initial values
Fssk,0d=1,Fdsk,0d=Sskd−1. The SISF is of interest by it-
self, since it is the basic magnitude that describes the one-
particle dynamic behavior of the system.

The dynamic structure factor(DSF) Ssk,vd and the self–
dynamic structure factor(SDSF) Sssk,vd are obtained from

the corresponding intermediate scattering functions by pass-
ing to the Fourier domain:

SskW,vd =
1

2p
E

−`

`

dt eivt FskW,td =
1

p
ReF̃skW,z= − ivd s3d

where Re stands for the real part andF̃skW ,zd is the Laplace

transform ofFskW ,td, i.e.,

F̃skW,zd =E
0

`

dt e−zt FskW,td. s4d

The memory functions of the ISF,Msk,td, and of the SIFS,
Mssk,td, are then introduced through the generalized Lange-
vin equations, which read in the time domain and in the
Laplace domain

d

dt
FskW,td = −E

0

t

dt MskW,tdFskW,t − td, s5d

F̃skW,zd = fz+ M̃skW,zdg−1FskW,t = 0d, s6d

with equivalent equations for the self-counterparts. The
higher order memory functions are introduced exactly in the
same way: the second order memory functionsNsk,td and
Nssk,td are the memory functions ofMsk,td and Mssk,td,
respectively, while the third order memory functions,Ksk,td
andKssk,td, are the memory functions ofNsk,td andNssk,td,
respectively. The initial values of the memory functions
which appear in the Laplace formulation of the generalized
Langevin equation are easily determined in terms of thenth

frequency moments of the DSF and SDFS,vnskWd
=e−`

` vnSskW ,vddv,

MskW,t = 0d = v2skWdv0skWd−1, s7d

NskW,t = 0d = v4skWdv2skWd−1 − v2skWdv0skWd−1, s8d

with again equivalent expressions for the self-counterparts.
Moreover, these frequency moments up to the fourth can be
determined from the knowledge of only the temperatureT,
the atomic mass, the interatomic pair potentialfsrd, and the
static structure, i.e.,gsrd andSskd.

A useful feature of a memory function is that it decays in
time more rapidly than the function from which it originates.
Based on this, it seems plausible that at some level of the
hierarchy of memory functions an approximation where the
memory function is just a Diracd function att=0 should be
a good ansatz. In the viscoelastic model the level at which
this ansatz is taken is the third, i.e., it is assumed that

KskW,td = KskWddstd ⇒ K̃skW,zd = KskWd,

KsskW,td = KsskWddstd ⇒ K̃sskW,zd = KsskWd. s9d

Explicit expressions ofKskWd and KsskWd in terms of the
same magnitudes as the frequency moments can be obtained
[3,4] by imposing that in the free-particle limitsk→`d the
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theory recovers the known exactSsk,v=0d=Sssk,v=0d.
Further details are given in the next section.

Introducing in Eq.(6) the higher order memory functions
up to the third it is found that

F̃skW,zd =
FskW,t = 0d

z+
MskW,t = 0d

z+
NskW,t = 0d

z+ KskWd

=
P2skW,zd

P3skW,zd
, s10d

where PnskW ,zd denotes a real polynomial inz of degreen.
Making a partial fraction decomposition of this expression,

and denoting byzi the roots ofP3skW ,zd, which, by the way,

are the same as the roots ofz+M̃skW ,zd, we have

F̃skW,zd = o
i=1

3
Ai

z− zi
⇒ FskW,td = o

i=1

3

Ai expfzitg s11d

where thezi and theAi appear either as real or in complex
conjugate pairs. Therefore either the three roots are real or
one is real and the other two are a complex conjugate pair. In
all practical situations the latter is the case, and then the roots
are interpreted as describing a diffusive mode and a pair of
damped propagating modes, much the same as in the hydro-
dynamic model, although fork values outside this regime.
The DSF is then a sum of three Lorentzian functions, one
centered atv=0 which corresponds to the real root, and the
other two centered at the imaginary parts of the complex
conjugate pair.

At small k, the functional form of the dynamic magni-
tudes within the viscoelastic model coincides with that of the
hydrodynamic model, which is known to be accurate in this
region. Futhermore, the viscoelastic modes behave(as a
function of k) much in the same way as the hydrodynamic
modes. However, in spite of the previous similarities, there
are basic differences between the viscoelastic and the hydro-
dynamic models. They are better understood if the derivation
of both models is made by an alternative route using the
generalized modes approach[5]. Here one considers the
equations of motion of several dynamic magnitudes, namely,
temperature(or energy) fluctuations, density fluctuations,
current fluctuations, and stress tensor fluctuations. The vis-
coelastic model follows from considering couplings among
the last three variables and ignoring their coupling with tem-
perature fluctuations. The hydrodynamic model follows from
considering couplings between the first three magnitudes and
ignoring their coupling to the stress tensor fluctuations. A
parameter quantifying the coupling between density and tem-
perature fluctuations is the specific heat ratiog=Cp/Cv. If
g,1 the coupling is weak and the viscoelastic model is
expected to be accurate; otherwise the model is expected to
fail especially at smallk.

Within the viscoelastic model, the analytical structure of
the self-functions, i.e.,Fssk,zd, the SISF and the SDSF, is the
same as that of the equivalent collective counterparts. How-
ever, the amplitude of the real coefficient associated with the
real root is usually much greater than the amplitudes of the

complex terms and therefore the associated propagating
modes in the SDSF have often been neglected when the vis-
coelastic model has been applied to study the dynamic prop-
erties of one-component liquids. It may be argued whether
these modes are real or a mere artifact of the model because
the SDSF describe the one-particle behavior of the system.
However, the close connection between collective and single
particle properties in dense systems could induce the appear-
ance of these modes. In any case, we stress that, to our
knowledge, no detailed study of this possibility has yet been
carried out.

B. Binary system: Ashcroft-Langreth partials

The generalization of the foregoing formalism to binary
systems is straightforward. We considerN particles in a vol-
umeV (therefore with number densityr=N/V), composed of
two speciessi =1,2d which are characterized by the number
of particlesNi, or concentrationxi =Ni /N, the atomic masses
mi, and ionic partial number densitiesri =xir. The interaction
between particles of typei and j is described by effective
interatomic pair potentialsfi jsrd and the static structure by
the partial pair distribution functionsgijsrd.

We start from the Fourier transform of the partial micro-
scopic number densities, defined as

r
kW
s jdstd =

1
ÎNj

o
,=1

Nj

expfikW · rW,
s jdstdg s j = 1,2d s12d

from which the partial intermediate scattering functions

FijskW ,td are obtained as

FijskW,td = kr
kW
sidstdr

−kW
s jds0dl = fFskW,tdgi j s13d

where the last equation defines the 232 matrix FskW ,td. The
initial value of this matrix reduces to the matrix of Ashcroft-
Langreth(AL ) partial structure factors,

FskW,t = 0d = SskWd, s14d

where

fSskWdgi j = SijskWd = di j + sxixjd1/2rE drW fgijsrd − 1gexpf− ikW · rWg.

s15d

As in the case of one-component systems, a similar separa-
tion into two terms is possible for all times, defining the self
and distinct parts of the partial ISFs:

FskW,td = FsskW,td + FdskW,td,

FijskW,td = di jFs,jskW,td + sxixjd1/2Fd,i jskW,td. s16d

Equations(3)–(8) remain formally the same, although now
all the magnitudes in the equations are matrices, the products
are to be understood as matrix products, and the exponent −1
means the matrix inverse. For instance, the memory function
matrix obeys in the time and the Laplace domains the equa-
tions
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d

dt
FskW,td = −E

0

t

dt M skW,tdFskW,t − td, s17d

F̃skW,zd = fzI + M̃ skW,zdg−1 FskW,t = 0d, s18d

whereI is the unit matrix.
The matrices of frequency moments are given by[6]

fv0skWdgi j = SijskWd, fv2skWdgi j = di j k2kBT

mi
, s19d

fv4skWdgi j = di j k2 kBT

mimj
S3k2kBT + o

,

x,rE drWgi,srWd
]2wi,srWd

] z2 D
− sxixjd1/2k2 kBT

mimj
rE drWgijsrWdcosskWrWd

]2wi jsrWd
] z2

= k2 kBT

mimj
Fdi jS3k2kBT + o

,

x,xi,skdD
− sxixjd1/2xL;i jskdG , s20d

where T is the temperature,kB is Boltzmann’s constant,z

denotes the direction ofkW, and the last equality defines the
functionsxi j andxL;i j .

The hierarchy of memory function matrices is again trun-
cated at the third level, setting

K skW,td = K skWddstd ⇒ K̃ skW,zd = K skWd s21d

so that explicitly we have for the ISF matrix and the first and
second order memory function matrices the relation(18) and

M̃ skW,zd = fzI + ÑskW,zdg−1 M skW,t = 0d, s22d

ÑskW,zd = fzI + K skWdg−1 NskW,t = 0d, s23d

with the initial values of the memory function matrices given
in terms of the frequency moments matrices as in Eqs.(7)
and (8). In order to provide explicit expressions for the ma-

trix elements ofK skWd we follow Lovesey’s arguments[3,4].
Settingz=0 in Eqs.(22) and (23) we have

M̃ skW,z= 0d = ÑskW,z= 0d−1 M skW,t = 0d

= fK skWd−1 NskW,t = 0dg−1 M skW,t = 0d

= NskW,t = 0d−1 K skWdM skW,t = 0d s24d

and therefore

K skWd = NskW,t = 0dM̃ skW,z= 0dM skW,t = 0d−1. s25d

The value ofM̃ skW ,z=0d=e0
` dt M skW ,td is then assumed to

be rather insensitive to the detailed shape of theMijskW ,td and
therefore a reasonable estimate can be obtained from an ap-
proximation that satisfies its correct short time behavior ob-
tained by a simple Taylor expansion, namely,

M skW,td = SI −
t2

2
NskW,t = 0d + ¯DM skW,t = 0d. s26d

The specific approximation we make forM skW ,td to perform
the integral is

M skW,td < expS−
t2

2
NskW,t = 0dDM skW,t = 0d. s27d

It is precisely at this point where the previous attempt to
generalize the viscoelastic model[1] failed, since a similar
approximation was made at the level of the matrix elements

MijskW ,td only, and not for the matrixM skW ,td itself, which is
obviously wrong because we are dealing with matrix prod-
ucts.

Within this approximationM̃ skW ,z=0d would be given by
the time integral of the exponential function times the matrix

M skW ,t=0d. Trying to correct the inaccuracies that might have
been introduced by this approximation, this value is premul-
tiplied by a matrixJ of constants to be determined later. In

this way an explicit expression forK skWd is found in terms of
the initial values of the second order memory functions:

K skWd = NskW,t = 0dJ E
0

`

dt expS−
t2

2
NskW,t = 0dD . s28d

The determination ofJ is carried out by imposing that in the
free-particle limit sk→`d the dynamic structure factor ma-
trix evaluated at zero frequency recovers the exact free-gas
result, i.e.,

fSskW,v = 0dgi j = di j S 1

2pk2

mi

kBT
D1/2

s29d

leading to the resultJ=s2Î2/pdI . In the Appendix we give
details of this derivation and explicit expressions for the ma-

trix elements ofK skWd.
Turning now to the analytic behavior ofF̃skW ,zd we see in

Eq. (18) that it is determined by the inverse of the matrix

fzI +M̃ skW ,zdg, namely, the transpose of the adjoint divided by

the determinant. Therefore, all theF̃ijsk,zd have the same
analytic behavior, which is determined by the solutions of
the equation

detfzI + M̃ skW,zdg = 0. s30d

As in the one-component case, this determinant is a real
rational function, whose form is obtained by writing down
explicitly the equations for the memory function matrices up
to the third, leading now to an expression of the type

P6skW ,zd /P4skW ,zd. Consequently there will be six roots, which
in principle may appear(together with the corresponding
amplitude matrices) as six real values, four real values and a
complex conjugate pair, two real values and two complex
conjugate pairs, or three complex conjugate pairs. Therefore
we have
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F̃skW,zd = o
i=1

6
1

z− zi
A i, FskW,td = o

i=1

6

A i expfzitg, s31d

where theA i are thekW-dependent 232 amplitude matrices.
In the actual calculations made for liquid Li-Na[2], as well
as those carried out in this paper, we found for allk two real
roots and two pairs of complex conjugate roots, at variance
with some other calculations where one of the complex con-
jugate pair transforms into two real roots below a certain
small k value[7,8]. All roots have negative real parts[7], so
we can rewrite the previous equation as

F̃ijskW,zd =
Aij

z− zs1d +
Aij

*

z− zs1d* +
Bij

z− zs2d +
Bij

*

z− zs2d* +
Cij

z+ zs3d

+
Dij

z+ zs4d , s32d

where thekW-dependent coefficientsAij andBij are complex,
while Cij and Dij are real. The complex rootszs jdskd
=−Gs jdskd± ivs

s jdskds j =1,2d describe propagation, where the
real partGs jdskd represents damping whereas the imaginary
partvs

s jdskd represents the propagation. A set of two complex
conjugate roots represents propagation in opposite directions.
The real roots −zs jdskds j =3,4d stand for purely diffusive pro-
cesses. Out of the six roots, only four go to zero whenk
→0; this coincides with the behavior of the four hydrody-
namic roots predicted by the hydrodynamic equations for
binary mixtures. Again we stress that although the smallk
behavior of the four viscoelastic modes is similar to the hy-
drodynamic ones, there are quantitative differences between
them based on the same reason as in the one-component
case, namely, the neglect of coupling with the energy fluc-
tuations. As in one-component liquids, the viscoelastic model
is expected to work for systems where this coupling is weak,
i.e., those with specific heat ratiog,1. The other two vis-
coelastic roots have a finite value whenk→0, while the cor-
responding amplitudes vanish in this limit; this is the typical
behavior of kinetic modes. The six roots lead to aSijsk,vd
given as a sum of six Lorentzians, two centered atv=0 and
the other four atv= ±vs

s jdskds j =1,2d.

C. Binary system: Bhatia-Thornton partials

An alternative description of the structure of binary alloys
is provided by the so called Bhatia-Thornton(BT) functions.
The BT static partial structure factors, namely, number-
number SNNskd, number-concentration SNcskd, and
concentration-concentrationSccskd partial structure factors,
describe the correlations among fluctuations in number den-
sity (irrespective of chemical composition) and concentration
density, and are linear combinations of the AL partial struc-
ture factorsSijskd. These relations are most compactly writ-
ten if one defines the matrixSskd of modified BT partial
structure factors in terms of the matrixSskd of AL partial
structure factors:

S = X S X s33d

where

Sskd = S SNNskd SNcskd/sx1x2d1/2

ScNskd/sx1x2d1/2 Sccskd/sx1x2d
D s34d

and

X = X−1 = SÎx1
Îx2

Îx2 − Îx1
D .

All other BT magnitudes(intermediate scattering func-
tions, first, second and third memory functions, frequency
moments, etc.) are defined in the same way, pre- and post-
multiplying the corresponding matrix of AL magnitudes by
the matrixX; for instance, the BT partial ISFs are defined by

the matrixFskW ,td,

FskW,td = X FskW,tdX = FsskW,td + FdskW,td, s35d

which leads to(dropping the arguments of the functions)

FNN = hx1Fs,1 + x2Fs,2j + hx1
2Fd,11+ 2x1x2Fd,12+ x2

2Fd,22j,

s36d

FNc

sx1x2d1/2 = hsx1x2d1/2sFs,1 − Fs,2dj + hsx1x2d1/2fx1sFd,11− Fd,12d

+ x2sFd,12− Fd,22dgj, s37d

and

Fcc

x1x2
= hx2Fs,1 + x1Fs,2d + hx1x2fFd,11− 2Fd,12+ Fd,22dg,

s38d

where the first braces in each equation enclose the BT SISFs
and the second braces enclose the BT distinct ISFs.

The viscoelastic model for the BT functions is then de-
fined by the relations

F̃skW,zd = fzI + M̃skW,zdg−1FskW,t = 0d, s39d

M̃skW,zd = fzI + ÑskW,zdg−1MskW,t = 0d, s40d

ÑskW,zd = fzI + KskWdg−1NskW,t = 0d, s41d

KskWd = NskW,t = 0dJE dt expS−
t2

2
NskW,t = 0dD , s42d

FskW,t = 0d = V0skWd = Sskd, s43d

MskW,t = 0d = V2skWdV0skWd−1, s44d

NskW,t = 0d = V4skWdV2skWd−1 − V2skWdV0skWd−1, s45d

VnskWd = X vnskWdX , s46d

or explicitly

VNN
2 = k2kBTS x1

m1
+

x2

m2
D ,
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Vcc
2 = k2kBTS x1

m2
+

x2

m1
D ,

VNc
2 = k2kBTsx1x2d1/2S 1

m1
−

1

m2
D s47d

and

VNN
4

k2kBT
= S x1

m1
2 +

x2

m2
2D3k2kBT + x1x2S 1

m2
−

1

m1
D2

x12

+ S x1
2

m1
2sx11 − xL;11d + 2

x1x2

m1m2
sx12 − xL;12d

+
x2

2

m2
2sx22 − xL;22dD ,

Vcc
4

k2kBT
= S x1

m2
2 +

x2

m1
2D3k2kBT + S x1

m2
+

x2

m1
D2

x12

+ x1x2S 1

m1
2sx11 − xL;11d −

2

m1m2
sx12 − xL;12d

+
1

m2
2sx22 − xL;22dD ,

VNc
4

k2kBTsx1x2d1/2 = S 1

m1
2 −

1

m2
2D3k2kBT + x1Sx11

m1
2 −

x12

m2
2D

+ x2Sx12

m1
2 −

x22

m2
2D − x1SxL;11

m1
2 −

xL;12

m1m2
D

− x2S xL;12

m1m2
−

xL;22

m2
2 D . s48d

D. Reduction to the one-component case

In the case of a pseudobinary mixture, when all the par-
ticles are of the same type but are labeled differently, all the
partial pair distribution functions reduce to that of the real
one-component liquid, i.e., g11srd=g22srd=g12srd=gsrd.
However, the AL partial structure factor, do not coincide
with that of the real one-component systemSskd, but

Sijskd = di j + sxixjd1/2fSskd − 1g.

Explicitly we have

S11skd = x2 + x1Sskd,

S22skd = x1 + x2Sskd,

S12skd = − sx1x2d1/2 + sx1x2d1/2Sskd. s49d

The BT partial structure factors, on the other hand, behave
more simply, because we now haveSNNskd=Sskd, SNcskd=0,
andSccskd / sx1x2d=1.

In many one-component systems(in particular liquid met-
als near the triple point) the value ofSskd for smallk is rather

small, of the orders2–3d310−2, reflecting a small value of
the isothermal compressibility. For a pseudobinary system,
we therefore obtain that, except for very dilute mixtures, the
smallk values of the partial static structure factors are domi-
nated by the first terms of Eqs.(49), which take on signifi-
cantly higher values than that of the structure factor of the
one-component liquid.

The situation concerning the ISFs is similar. According to

their definition [see Eq.(16)], we haveFs,1skW ,td=Fs,2skW ,td
=FsskW ,td, which is the SISF of the real one-component liq-

uid, andFd,11skW ,td=Fd,22skW ,td=Fd,12skW ,td=FdskW ,td, which is
the distinct ISF of the real one-component liquid. Therefore
the AL partial ISFs are given by

FijskW,td = di jFsskW,td + sxixjd1/2FdskW,td,

and explicitly

F11skW,td = x2FsskW,td + x1FskW,td,

F22skW,td = x1FsskW,td + x2FskW,td,

F12skW,td = − sx1x2d1/2FsskW,td + sx1x2d1/2FskW,td, s50d

which is an awkward relation that induces a behavior of the
partial ISFs very different from that of the real one-
component liquid. On the other hand the BT partial ISFs
become

FNNskW,td = sx1 + x2dFsskW,td + sx1 + x2d2FdskW,td

= FsskW,td + FdskW,td

= FskW,td, s51d

FNcskW,td = 0, s52d

FccskW,td/sx1x2d = sx1 + x2dFsskW,td = FsskW,td, s53d

that is, the cross function vanishes, the number-number func-
tion reduces to the ISF of the real one-component liquid, and
the concentration-concentration function, properly normal-
ized, reduces to the SISF of the real one-component system.

Coming to the viscoelastic model, in particular in the BT
formulation, we note that all the magnitudes are determined
by the frequency moment matrices. In a pseudobinary system
we havem1=m2, and all thexi j reduce tox which is obtained
by settinggijsrd=gsrd andfi jsrd=fsrd; also by the same pro-
cedure, all thexL;i j reduce toxL. Then all the frequency
moment matrices in the BT formulation become diagonal,
and therefore the same occurs to all the other matrices, so
that the matrix operations in fact become the same operations
on the diagonal elements of the matrices, i.e., theNN and the
cc functions.

In particular we have

VNN
4 =

k2kBT

m2 f3k2kBT + xskd − xLskdg s54d
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Vcc
4 =

k2kBT

m2 f3k2kBT + xskdg s55d

which are, respectively, the fourth frequency moments of the
DSF and the SDSF of the one-component system. Likewise

VNN
2 =

k2kBT

m
= Vcc

2 , s56d

which again are the second frequency moments of the DSF
and the SDSF of the one-component system, and as we
stated beforeVNN

0 =SNNskd=Sskd and Vcc
0 =Sccskd / sx1x2d=1,

which are the corresponding zeroth frequency moments of
the DSF and the SDSF of the one-component system, respec-
tively.

Therefore, the present formulation of the viscoelastic
model for the collective dynamic properties of binary mix-
tures recovers, in the case of a pseudobinary system, not only
the viscoelastic model for the collective properties of the
underlying one-component system, through the number-
number BT functions, but also the viscoelastic model for its
single particle properties, through the concentration-
concentration functions. Moreover, the determinant that
leads to the different modes factorizes into two terms, one
that includes the modes of the DSF with the other term ac-
counting for the modes of the SDSF of the one-component
system; this implies that both sets of modes are decoupled.

III. RESULTS

In this section we study three systems and compare the
results of the viscoelastic model with those obtained by mo-
lecular dynamics simulations.

The first is a pseudobinary system, in which all particles
are in fact the same type, but half of them are labeled as 1
and the other half as 2sx1=x2=0.5d. Specifically the system
is representative of7Li at T=725 K andr=0.042 Å−3, and
the effective pair potentials used(all three identical) were
obtained using the empty core pseudopotential[9], with core
radius 1.44 Å. Some MD results for this system have been
reported elsewhere[10] and are extended here. They have
been obtained using 668 particles in a cubic box with peri-
odic boundary conditions.

The other two cases correspond to two Li-based alloys,
Li 0.7Mg0.3, which is a typical quasi-ideal mixture, and Li4Pb,
which is a reference case for a class of compound forming
alloys with preionic ordering. The temperatures and densities
are T=887 K and r=0.040 711 Å−3 for Li0.7Mg0.3 and T
=1085 K andr=0.045 58 Å−3 for Li4Pb. The interatomic
pair potentials were obtained in the case of Li0.7Mg0.3 within
the neutral pseudoatom method[11] while in the case of
Li4Pb they were taken from Copestakeet al. [12]. The col-
lective propeties of the Li0.7Mg0.3 alloy have been studied by
Anento and Padró[13,14], and those of Li4Pb by several
authors[15,16], the latter being the first system where the
fast sound phenomenon was observed, which consists in the
appearance of a peak in the Li-Li dynamic structure factor,
absent in the Pb-Pb one, with a very high frequency similar
to that of pure Li. In this paper we include MD results ob-
tained for both systems, in the case of Li0.7Mg0.3 with 570

particles and in the case of Li4Pb with 600 particles for most
k values and with 11 000 particles for the smallest ones
skmin=0.10 Å−1d.

The difference between the AL ISFs of the two types of
system is striking: while Li4Pb hasFijsk,td, and in particular
the Li-Li partial, that decay more or less rapidly with time,
similar to the behavior of one-component systems, Li0.7Mg0.3
on the other hand showsFijsk,td which have much larger
magnitudes and decay much more slowly, in practice making
very difficult the Fourier transformation that leads to the
DSFs.

A proper description of such different behaviors, along
with the case already studied of phase separating systems
like Li0.69Na0.31 [2], would therefore provide reliability to the
viscoelastic model.

The static structure and the frequency moments, which
are a required input of the viscoelastic model for the calcu-
lation of the dynamic properties, have been computed using
the variational modified hypernetted chain(VMHNC) ap-
proximation [17] which reproduces rather well the simula-
tion results, although small differences can and do appear in
the structural functions, which show up, for instance, in a
small mismatch of the initial theoretical and simulation val-
ues of the ISFs. While it would be possible to use the simu-
latedSijskd instead of the VMHNC ones, the calculation by
simulation of the fourth frequency moments is rather unreli-
able.

We recall that the viscoelastic model is expected to be
accurate for systems withg,1. Generalized hydrodynamics
calculations ofg have been performed for liquid Li[18],
liquid Pb [19], and liquid Na-K and K-Cs alloys[20], lead-
ing in all cases tog values not far from 1. These results give
some support to the application of the viscoelastic model to
liquid metals and alloys, in contrast to other systems like
Lennard-Jones liquids[7,8] whereg is larger.

A. Model 1: Pseudobinary system

Due to the particular concentrationx1=x2=0.5, an addi-
tional symmetry appears in the system, that implies that
S11skd=S22skd, F11sk,td=F22sk,td and so on.

Figure 1 shows the partial structure factors obtained from
the simulation and the VMHNC theory, which are practically
coincident. The first thing to note is that, as stated above, the
smallk values attained by theSijskd are in magnitude close to
0.5 (the concentrations) which is one order of magnitude
larger than the structure factor of the corresponding one-
component system in the same region. This will imply a
much larger initial value of the partial ISFs of the system as
compared to the ISF of the one-component system. The
Fijsk,td are shown in Fig. 2, where we have plotted both the
MD results and the viscoelastic ones. The results for smallk
are markedly different from theFsk,td of the one-component
system, and not only in the initial value. The latter shows
clear oscillations around zero, whereas the partial ISFs of the
pseudobinary system show a large diffusive component
which decays very slowly.

The reason for this behavior can be found in the roots and
corresponding amplitudes that are obtained within the vis-
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coelastic model. The roots are plotted in Fig. 3, where we see
that one of the propagating roots vanishes in thek=0 limit,
while the other remains nonzero in this limit. We recall that
in a pseudobinary system the determinant that leads to the
roots factors into two third degree polynomials, which cor-
respond to the modes of the DSF and the SDFS of the one-
component system respectively. The first propagating root
corresponds to the propagating mode in the DSF of the one-
component system, while the nonvanishing root is an unex-
pected propagating mode that appears in the SDSF of the
one-component system. Of the remaining two real roots, the
largest one in magnitude for smallk is the diffusive mode of
the DSF of the one-component system, whereas the smallest
one in magnitude corresponds to the diffusive mode of the
SDSF of the one-component system. It is precisely this last
root that is responsible for the behavior of the partialFijsk,td,

since its contribution is the most slowly decaying one. More-
over its amplitude is the largest for smallk, as can be ob-
served in Fig. 4. In fact we have plotted only the amplitudes
corresponding to the 11 partial, since due to the symmetry
imposed by the concentrations the amplitudes corresponding
to the 22 partial are the same as the 11 ones, while we also
have thatA12=A11, B12=−B11, C12=C11, D12=−D11. Note
that B11 goes to 0 ask→0, which is another characteristic
feature of the kinetic modes. It is also interesting to observe
the similarity betweenC11 and the structure factors. We can
therefore conclude that the extremely slow decay ofFijsk,td
is a direct consequence of the influence of the single particle
dynamics on the behavior of the ISFs, and this is due to the
very definition of the AL partial ISFs. When one comes tothe
BT partials no such problems arise, since there is a complete
decoupling of the single particle dynamics, which goes ex-

FIG. 1. Static partial structure factors for pseudobinary Li. Full
line and circles,S11skd=S22skd; dashed line and triangles,S12skd;
dotted line and squares, one-component systemSskd. The lines are
theoretical results and the symbols denote MD simulation results.

FIG. 2. Partial ISFs for pseudobinary Li. Full lines(top panel),
F11sk,td=F22sk,td, dashed line(middle panel), F12sk,td; dotted line
(bottom panel), FNNsk,td, which coincides with the one-component
systemFsk,td. The symbols are the corresponding MD results. Left
column, k=0.23 Å−1; middle column,k=1.23 Å−1; right column,
k=2.51 Å−1.

FIG. 3. Roots of pseudobinary Li in the viscoelastic model. Full
lines, vs

s1d and Gs1d; dashed lines,vs
s2d and Gs2d; dotted line,zs3d;

dash-dotted line,zs4d.

FIG. 4. Amplitudes of the different modes of pseudobinary Li in
the viscoelastic model. Full lines,A11; dashed lines,B11; dotted
lines,C11; dash-dotted line,D11.
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clusively into the concentration-concentration partial, and the
collective dynamics, which is exclusively responsible for the
number-number partial. Obviously this complete decoupling
is due to the ideal character of this system.

The Fourier transforms of the longitudinal current corre-
lation functions are directly related to the DSFs, through the
relationCijsk,vd=sv2/k2dSijsk,vd (and the same relation for
the BT currents), while they can be calculated independently
in the MD runs. They are especially useful in the cases where
a slowly decaying term appears in the ISFs which compli-
cates the computation of the DSFs, while the multiplication
by v2 depletes the low frequency modes and enhances the
high frequency ones. In Fig. 5 we show the functions
Cijsk,vd and also the BT ones. We always find a clear peak
and a minimum inC12sk,vd, while there is a clear maximum
in C11sk,vd at the position of the peak ofC12sk,vd, and
sometimes a shoulder at the position of the minimum. These
are of course the remnants of the two propagating modes.
The coincidence of the shoulder ofC11sk,vd with the mini-
mum ofC12sk,vd suggests that the second propagating mode
on top of being kinetic is optical in character, with the two
“species” moving in opposite directions. The appearance of
an optical mode in a pseudobinary liquid system resembles a
similar effect that appears for crystals: when a linear chain
with equilibrium distancea is considered as a chain with
equilibrium distance 2a with a basis formed by two “differ-
ent” atoms separated by a distancea [21], then the first Bril-
louin zone becomes half the original one, and the original
dispersion relation becomes folded into the new one leading
to the optical mode. The BT currents on the other hand al-
ways show a single peak, in theNN case(which is the cur-

rent of the one-component system) at the positions of the
peaks in the 11 and 12 functions, and in thecc case(which is
the self-current of the one-component system) at the position
of the minimum of the 12 function.

The appearance of the peak in the self-currents of the
one-component system is very clear in the MD simulations,
showing that also in the single particle properties of this
system there are indeed propagating contributions, of kinetic
character. These modes had not been reported previously, at
least to our knowledge, since the focus has usually been put
on the initial value and the width of the SDSF of the systems,
analyzing the behavior of these properties within the differ-
ent theoretical approaches. The reproduction of these propa-
gating modes by the viscoelastic model(for the single par-
ticle properties) is therefore an interesting property of this
theory, and warrants a wider application of the model in the
analysis of the single-particle properties of, at least, this type
of dense liquids.

B. Li-based alloys: Ideal and compound forming mixtures

In the following we will denote Li as component 1. The
partial static structure factors of both liquid alloys are shown
in Fig. 6. Those corresponding to Li0.7Mg0.3 are similar in
character to those of the pseudobinary alloy, except for the
difference in concentration, so the values ofSijsk=0d are
larger than that of a one-component system. On the other
hand the results for Li4Pb are very different; in particular, the
values ofSijsk=0d are all three similar in magnitude to the
case of a one-component system; moreover the dip inS12skd
and the coincident positions of the maximum ofS11skd and
the minimum ofS22skd are indicative of a kind of ionic or-
dering in the melt[22]. The corresponding ISFs are also
strikingly different for the two systems, especially for small
k, as observed in Figs. 7 and 8. As in the pseudobinary sys-
tem, the ISFs of Li0.7Mg0.3 have a very slowly decaying dif-
fusive term for smallk. In the case of Li4Pb, the slowly
decaying term is practically absent inF11sk,td and while
there is indeed such a term inF12sk,td and especially in
F22sk,td, it decays much more rapidly than in Li0.7Mg0.3 (ob-
serve they-axis scales in Figs. 7 and 8) even though the Pb
ionic mass is much larger than the Mg one.

FIG. 5. Partial currents for pseudobinary Li. Lines are theoreti-
cal results and symbols denote simulation data. Full line and circles
(upper panel), C11sk,vd=C22sk,vd; dashed line and triangles(up-
per panel), C12sk,vd; dotted line and circles(lower panel),
CNNsk,vd, which coincides with the one-component system
Csk,vd; dash-dotted line and triangles(lower panel), scaled
Cccsk,vd, which coincides with the one-component system
Cssk,vd. Left column, k=0.23 Å−1; middle column,k=1.23 Å−1;
right column,k=2.18 Å−1.

FIG. 6. Static partial structure factors for Li0.7Mg0.3 and Li4Pb.
Full lines and circles,S11skd; dotted lines and squares,S22skd;
dashed lines and triangles,S12skd. The lines are theoretical results
and the symbols denote MD simulation results.
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Again the reason for such behaviors can be traced back to
the roots and the amplitudes of the modes associated with the
three partials. The roots are shown in Fig. 9. We see that, due
to the mass difference, the frequencyvs

s1d and dampingGs1d

of the low frequency root are larger for Li0.7Mg0.3 than for
Li4Pb, while the high frequency root and the larger real root
have quite similar magnitude and variation withk for the two
systems, being much more influenced by the masses of the
components and the thermodynamic state than by the par-
ticular structure of the alloy. The smallest real rootzs4d also
behaves differently for Li0.7Mg0.3 and Li4Pb, staying much
closer toGs1d for the latter. For smallk, in particular,zs4d is
significantly larger for Li4Pb than for Li0.7Mg0.3, which ex-
plains the faster decay ofF12sk,td andF22sk,td in Li4Pb.

Figures 10–12 show the amplitudes forFijsk,td. The first
noticeable feature is that theF22sk,td functions are com-

pletely dominated for allk by the smallest real root, and to a
lesser extent by the low frequency root, the other two ampli-
tudes being smaller, except in the case of Li0.7Mg0.3 in the
region of the main peak of the corresponding structure factor
and for smallk, where the amplitude corresponding to the
larger real root is also significant. The case of theF12sk,td
functions is rather similar, with the difference that for smallk
in Li0.7Mg0.3 the three amplitudes corresponding to the two
propagating roots and the larger real root are of similar mag-
nitude. Note again the striking similarity between the ampli-
tudes of the smallest real root and the structure factors, with
D12 and D22 following, respectively,S12skd and S22skd. The
different behavior of these structure factors for the two sys-
tems implies now that the amplitude of the diffusive mode is
much smaller for Li4Pb than for Li0.7Mg0.3. As for the
F11sk,td functions, the structure of the amplitudes is richer.

FIG. 7. Partial ISFs for Li0.7Mg0.3. Lines are theoretical results
and symbols are simulation data. Full lines(top panel), F11sk,td;
dashed lines(middle panel), F12sk,td; dotted lines(bottom panel),
F22sk,td. Left column,k=0.28 Å−1 (theory), 0.26 Å−1 (simulation);
middle column,k=1.25 Å−1 (theory), 1.23 Å−1 (simulation); right
column,k=1.88 Å−1 (theory and simulation).

FIG. 8. Partial ISFs for Li4Pb. The meanings of the lines and
symbols are the same as in the previous figure. Left column,k
=0.31 Å−1 (theory), 0.27 Å−1 (simulation); middle column, k
=1.30 Å−1 (theory and simulation); right column, k=1.76 Å−1

(theory), 1.74 Å−1 (simulation). Note the different scales in the time
axis for F11sk,td.

FIG. 9. Roots of Li0.7Mg0.3 (thick lines) and Li4Pb(thin lines) in
the viscoelastic model. Full lines,vs

s1d and Gs1d; dashed lines,vs
s2d

andGs2d; dotted lines,zs3d; dash-dotted lines,zs4d.

FIG. 10. Amplitudes of the different modes ofF11sk,td for
Li0.7Mg0.3 (thick lines) and Li4Pb (thin lines) in the viscoelastic
model. Full lines,A11; dashed lines,B11; dotted lines,C11; dash-
dotted lines,D11.
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For medium and largek the dominant term iszs3d, the larger
real root, with its amplitudeC11 following S11skd. For small
k, on the other hand, the situation is different;D11 is domi-
nant for Li0.7Mg0.3, while for Li4Pb C11 is still the dominant
contribution, with an intermediate region around 1.5 Å−1,
whereD11 is of similar magnitude. Therefore the overall de-
cay of F11sk,td is dictated byzs3d, which being much larger
thanzs4d induces a much faster decay; note the smaller scale
in the time axis forF11sk,td in Fig. 8.

It is also interesting to observe that out of the two propa-
gating roots, the dominant one for very smallk is the low
frequency one, and therefore in this limit all three partials
oscillate with the same frequency, as happens within the hy-
drodynamic model. There is, however, a transition from this
behavior to the dominance of the high frequency mode fork
values around 0.2 Å−1 for Li4Pb and around 0.5 Å−1 for
Li 0.7Mg0.3. This will have a direct impact on the presence of

low and/or high frequency peaks in the partial DSFs.
In Fig. 13 we show the DSFs for both alloys at a small

wave vector, a wave vector in the transition region, and at a
largerk. In the case of Li4Pb we observe at the smallestk a
clear peak inS11sk,vd and S12sk,vd and a shoulder in the
S22sk,vd, all at the same frequency, akin to hydrodynamic
sound propagation, even though the presence of the diffusive
term masks the propagating mode andS22sk,vd shows no
side peak. For largerk we find a prominent peak inS11sk,vd
due to the high frequency contribution, while there is no
indication of any peak inS22sk,vd. This appearance of high
frequency peaks in the DSF of the light component(11) and
its absence in the DSF of the heavy component(22) has been
associated with the so called “fast sound” phenomenon,
which as we see appears naturally within the viscoelastic
model as a consequence of the two propagating roots of the
model. In the case of Li0.7Mg0.3 the diffusive contribution to
Sijsk,vd is very large for smallk, and completely covers the
(low frequency) propagating contribution, so that no side
peaks appear in the DSFs even for rather smallk values.
Anyhow this contribution is indeed present and shows up as
a rather weak shoulder at the same frequency in all three
Sijsk,vd. For largerk the higher frequency component be-
comes more important inS11sk,vd and due to its larger fre-
quency is less covered by the diffusive contribution, so that
for sufficiently largek a peak finally develops inS11sk,vd,
whereasS22sk,vd, whose dominant propagating contribution
is the low frequency one, never develops a side peak. There-
fore the situation is rather similar to the case of Li4Pb, except
that the separation between the frequencies of the low and
the high frequency modes is smaller due to the smaller mass
of Mg, and that the magnitude of the diffusive mode in
Li0.7Mg0.3 definitely obscures the analysis.

Coming to the BT functions, one can expect that
Li 0.7Mg0.3, being a quasi-ideal system, should behave simi-

FIG. 11. Amplitudes of the different modes ofF12sk,td for
Li0.7Mg0.3 (thick lines) and Li4Pb (thin lines) in the viscoelastic
model. Full lines,A12; dashed lines,B12; dotted lines,C12; dash-
dotted lines,D12.

FIG. 12. Amplitudes of the different modes ofF22sk,td for
Li0.7Mg0.3 (thick lines) and Li4Pb (thin lines) in the viscoelastic
model. Full lines,A22; dashed lines,B22; dotted lines,C22; dash-
dotted lines,D22.

FIG. 13. Dynamic structure factors in units of picoseconds for
Li0.7Mg0.3 (upper panel) and Li4Pb (lower panel) at wave vectors
shown in the graphs. Full lines,S11sk,vd; dashed lines,S12sk,vd;
dotted lines,S22sk,vd. The thin dash-dotted line denotes the low
frequency contribution toS11sk,vd and the thin full line is the cor-
responding high frequency contribution, which is negligible for the
lowestk. Symbols denote simulation data at wave vectors 0.53 and
0.65 Å−1 for Li4Pb. For these graphsS22sk,vd have been shifted
upward by 0.0001 to improve visibility.
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larly to the pseudobinary system, i.e., the single particle dy-
namics should dominate the concentration-concentration par-
tials, while the collective dynamics should dominate the
number-number partials. This is indeed what happens, as
shown in Fig. 14, where we see thatFNNsk,td in fact decays
much faster than the partials, which is similar to the behavior
obtained for the pseudobinary system,Fccsk,td is practically
purely diffusive, as happens for the SISF of a one-component
system, andFNcsk,td is very much smaller than the two other
partials. Obviously this is also reflected in the dynamic struc-
ture factors, which are plotted in Fig. 15.SNNsk,vd shows
clear shoulders or peaks, whileSccsk,vd shows neither side
peaks nor shoulders(note that for the smallestk shown the
MD FNcsk,td is too noisy to allow a reliable Fourier trans-
form). On the contrary, the case of Li4Pb is different, as
shown in Figs. 16 and 17.FNNsk,td now exhibits a certain
diffusive component andFccsk,vd does show oscillations. As
a consequence,Sccsk,vd presents well-defined side peaks or
shoulders, indicative of propagating concentration modes. It

is important to note that the magnitude of these peaks is very
small, around 10−5, compared to the value ofSccsk,v=0d,
which is far outside the range of the graph, being around
10−3–10−2 depending on the wave vector. We stress that the
reproduction of the different behaviors exhibited by the two
alloys, even at the level of such small details, represents a
stringent test which is well satisfied by the viscoelastic
model.

Finally we address the longitudinal current correlation
functions. In Fig. 18 we show the AL and the BT functions
for Li0.7Mg0.3, and in Fig. 19 those corresponding to Li4Pb.
Again the case of Li0.7Mg0.3 is very similar to pseudobinary
Li. For small k, the three AL partials have a peak at a com-
mon frequency. On the other hand,C12sk,vd exhibits both a
maximum and a minimum for allk, whose positions coincide
with the maxima(or shoulders at smallk) of C11sk,vd and
C22sk,vd, respectively. The behavior of the BT currents is
also similar to pseudobinary Li:CNNsk,vd shows only one
peak, andCccsk,vd also shows only one peak, although since
the decoupling number-concentration is not complete, a clear

FIG. 14. Bhatia-Thornton ISFs for Li0.7Mg0.3. The k values for
the different columns are the same as in Fig. 7. Note in some cases
the different scales in the time axis forFNNsk,td. Lines are theoret-
ical results and symbols are simulation data.

FIG. 15. Bhatia-Thornton DSFs for Li0.7Mg0.3 in units of
10−4 ps. Thek values for the different columns are the same as in
Fig. 7. Lines are theoretical results and symbols are simulation data.

FIG. 16. Bhatia-Thornton ISFs for Li4Pb. Thek values for the
different columns are the same as in Fig. 8. Lines are theoretical
results and symbols are simulation data. Note in some cases the
different scales in the time axis forFNNsk,td.

FIG. 17. Bhatia-Thornton DSFs for Li4Pb in units of 10−4 ps.
The k values for the different columns are the same as in Fig. 8.
Lines are theoretical results and symbols are simulation data.
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feature(a shoulder) does also appear at the frequency of the
maximum ofCNNsk,vd. In the case of Li4Pb it is evident that
the smallestk shown in the graph is already outside the hy-
drodynamic region. For all thek values shown we observe
two characteristic frequencies, a small one for which we
have a maximum inC22sk,vd and a maximum(at low k) or
a minimum (at largerk) for C12sk,vd, and a high one at
which there is a maximum inC11sk,vd and a minimum(at

small k) or a maximum(at largerk) in C12sk,vd. The BT
currents, on the other hand, always show a common maxi-
mum at the high characteristic frequency and a maximum in
Cccsk,vd, minimum in CNcsk,vd, at the low one. We there-
fore see that in Li4PbCccsk,vd has a clear double peak struc-
ture, each situated close to the low and high frequency roots
of the model.

IV. CONCLUSIONS

We have presented an extension of Lovesey’s viscoelastic
model to binary mixtures that correctly recovers the same
model for the one-component system in the case of pseudo-
binary mixtures, including both the collective and the single
particle properties.

We have observed in the MD simulations of this kind of
system a clear appearance of propagating modes in the single
particle dynamic properties of the one-component system,
specifically in the longitudinal self-current correlation func-
tion, which the viscoelastic model reproduces correctly.

In the case of alloys, the appearance of two propagating
roots in the model leads naturally to the fast sound phenom-
enon, which is explained as the dominance of the high fre-
quency propagating contribution in the DSF of the light com-
ponent, appearing near thek values where the amplitudes of
the two propagating roots coincide. For smallerk the ampli-
tude of the high frequency component goes to zero and
therefore all the DSFs have a component with a peak at a
common frequency, namely, that of the smaller propagating
root. Whether this component shows up as a peak or not in
the DSFs depends strongly on the amplitude(and width) of
the diffusive contributions, which in some cases(like
Li0.7Mg0.3) can cover the propagating contribution.

The viscoelastic model is able to reproduce the different
behaviors of the ISFs of pseudobinary Li and Li0.7Mg0.3 on
one hand and Li4Pb on the other. The extremely slow decay
of the ISFs for the former two cases is dictated by the small
value and large amplitude associated with the smallest real
root of the model, which moreover in the case of pseudobi-
nary Li is strictly the single particle contribution. In the case
of Li4Pb a combination of factors leads to a more rapid de-
cay: first, the smallest real root is larger than in Li0.7Mg0.3;
second, the amplitudes associated with this root in the 22 and
12 partials are much smaller than those in Li0.7Mg0.3, due to
the behavior of the amplitudes which follow the correspond-
ing partial structure factors; and third, in the case of the 11
partial it is the larger real root that is the dominant one for
small k, leading therefore to a much faster overall decay.
Another important difference is the presence in Li4Pb of
propagating concentration modes, which are absent in
Li0.7Mg0.3. The presence(or absence) of clear side peaks in
Sccsk,vd is neatly reproduced by the viscoelastic model, in
spite of their very small magnitudes.

We conclude by stressing that although quantitative dif-
ferences do appear between the results of the model and the
simulations as a result of the approximations involved in the
former, nevertheless the model reproduces accurately the
main characteristic features of the dynamic properties of the
systems studied, including very fine details in the peaks of

FIG. 18. Longitudinal current correlation functions for
Li0.7Mg0.3. Lines are theoretical results and symbols are simulation
data. Upper panel: Ashcroft-Langreth partials, full line and circles,
C11sk,vd; dashed line and squares,C12sk,vd; dotted line and tri-
angles,C22sk,vd Lower panel: Bhatia-Thornton partials; full line
and circles,CNNsk,vd; dashed line and squares, scaledCccsk,vd;
dotted line and triangles, scaledCNcsk,vd. The k values for the
different columns are the same as in Fig. 7.

FIG. 19. Longitudinal current correlation functions for Li4Pb.
Lines are theoretical results and symbols are simulation data. Upper
panel: Ashcroft-Langreth partials. Lower panel: Bhatia-Thornton
partials. The meaning of the lines and symbols is the same as in the
previous figure. Thek values for the different columns are the same
as in Fig. 8.
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Sccsk,vd and even unexpected peaks in the single particle
properties. We believe that this shows that the model is use-
ful and therefore warrants its application to the analysis of
data(possibly obtained by any other means) on the dynamic
properties of alloys, and on the single particle properties of
one-component systems, which will complement the already
wide application of the model for the collective dynamics of
one-component systems.
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APPENDIX

Here, we derive the expressions for the matricesJ and

K skWd in the case of a two-component system. In Sec. II B,
these matrices were determined by the integral

E
0

`

dt expS−
t2

2
NskW,t = 0dD .

The exponential is easily performed after diagonalizing

NskW ,t=0d. Denoting byhl1skWd ,l2skWdj and hx1skWd ,x2skWdj its
eigenvalues and eigenvectors we can write

NskW,t = 0d = PskWdNDskWdPskWd−1 sA1d

where NDskWd is a diagonal matrix having the eigenvalues

hl1skd ,l2skdj on the diagonal, whereasPskWd is a matrix hav-
ing hx1skd ,x2skdj as its column vectors. The exponential is
then straightforward and the wanted integral is readily evalu-
ated leading to

M̃ skW,z= 0d =
Îp

2
J PskWdDskWdPskWd−1 M skW,t = 0d sA2d

where DskWd is a diagonal matrix with elements
hÎ2/l1skd , Î2/l2skdj on the diagonal. Now, by using Eq.
(18), it is obtained that

F̃skW,z= 0d =
2

Îp
fJPskWdDskWdPskWd−1M skW,t = 0dg−1FskW,t = 0d

sA3d

and by examining thek→` limit of this equation, the ele-
ments of the matrixJ are obtained. In particular we have

liskW → `d =
2k2kBT

mi
,

PskW → `d = I ,

fM skW → `,t = 0dgi j = di j
k2kBT

mi
,

fF̃skW → `,z= 0dgi j = pSijskW,v = 0d = di jS p

2k2

mi

kBT
D1/2

sA4d

leading toJ=s2Î2/pdI .
Now, we turn to the determination of the matrixK skWd. By

inserting Eq.(A2) in Eq. (25), and using the previous result
for J, it is obtained that

K skWd =
Îp

2
PskWdDskWdPskWd−1. sA5d

The explicit expressions for the matrix elements ofK skWd are

K11skWd =
2

Îp

N12skWdN21skWdl1
1/2skWd + b2skWdl2

1/2skWd

N12skWdN21skWd + b2skWd
,

K12skWd =
2

Îp

N12skWdbskWdfl1
1/2skWd − l2

1/2skWdg

N12skWdN21skWd + b2skWd
,

K21skWd =
2

Îp

N21skWdbskWdfl1
1/2skWd − l2

1/2skWdg

N12skWdN21skWd + b2skWd
,

K22skWd =
2

Îp

N12skWdN21skWdl2
1/2skWd + b2skWdl1

1/2skWd

N12skWdN21skWd + b2skWd
, sA6d

where theNijskWd are the matrix elements ofNskW ,t=0d, the
eigenvalues are given by

l1skWd =
1

2
fN11skWd + N22skWdg + FSN11skWd − N22skWd

2
D

+ N12skWdN21skWdG1/2

,

l2skWd =
1

2
fN11skWd + N22skWdg − FSN11skWd − N22skWd

2
D

+ N12skWdN21skWdG1/2

, sA7d

andbskWd=l1skWd−N11skWd.
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